全球最大網路設備業者思科(Cisco)公司在去年1月同意以8.3億美元併購以攔截與過濾垃圾郵件著名的軟體供應商IronPort Systems,以強化思科在資訊安全相關軟體方面的實力。思科購入IronPort公司後,不僅可為其客戶提供包括垃圾郵件過濾軟體和其他資安防護軟體,而此一併購案也象徵思科公司除本業的網路設備(router)外,也跨入資安軟體的領域進而挑戰其他大型防毒軟體業者(如賽門鐵克Symantec)。
以併購取得其他公司的商標、專利或人力資源等,在競爭激烈的商場十分常見,本來不足為奇,但此案值得注意的是原本思科公司的併購策略(acquisition strategy)是指派專人,將被併購的公司迅速融入思科體系,除取得原有的資源外,也可以快速地進入市場,此種方式亦是目前大多數廠商所採行的方法。
但自2003年後思科公司開始思考採取不同的併購方式:保留被併購公司的商標與行銷團隊,除可避免併購之後所可能產生的文化衝擊、制度磨合等問題,透過新的方式思科公司仍然獲得極大的收益。近來常聽聞國內的廠商積極併購其他公司,除成本或智慧財產等,管理制度亦是考量的重點之一,或許思科公司的策略可以提供給國內廠商參考。
本文為「經濟部產業技術司科技專案成果」
墨西哥的聯邦資料保護法在二0一0年四月經墨西哥國會通過後,已於同年七月六日生效。這個新法旨在保護個人的隱私權並強化個人對自身資訊的掌控。與我國新近通過的個人資料保護法相同,墨西哥的這個新法所規範的範圍也包括了私部門對個人資料的蒐集、處理與利用。 在新法通過之後,原本的聯邦公共資訊近用機構(Federal Institute for Access to Public Information),亦擴張執掌並更名為聯邦公共資料近用及資料保護機構(Federal Institute of Access to Information and Data Protection)。在新制下,該機構將在原有負責事務外,另肩負起監督私部門就個人資料保護的相關事務。 此外,該法設計了一個雙重的監督機制:當資料的蒐集、處理或利用人,也就是所謂的資料控制者(Data Controller)出現可能違反聯邦資料保護法的狀況,將先由各相關部門的主管機關,例如主管經濟事務的機關或主管交通事務的機關來介入處理,而非由聯邦公共資料近用及資料保護機構立刻介入。
加拿大隱私專員辦公室針對聯邦廣播與電信修法提出隱私權與個資保護建議加拿大隱私專員辦公室(Office of the Privacy Commissioner of Canada, OPC)於2019年1月11日就其聯邦廣播通訊法(Radiocommunication Act, RA)與電信法(Telecommunications Act, TA)提出隱私權與個資保護建議。現行加拿大聯邦廣播通訊法針對個資保護並無特別立法,而其電信法第七條雖有提及要注重個資隱私,卻無實質責任規範。惟廣播與電信公司蒐集、處理及利用個資時,如何確保當事人之個資隱私受到保護,就此加拿大隱私專員辦公室提出三點修法建議。 一、電信法及廣播通訊法應包含哪些隱私安全與資訊安全之概念? 基於人民將大量敏感個資委託給電信業者,以獲得互聯網、電話及電視通信便利服務。惟個人資訊不但具有龐大商業價值,對於執法機關和情報安全機構也具有相當利益。基於以下因素,加拿大隱私專員辦公室建議制定電信業者更新之安全機制與公共安全義務。 保護措施 現行法規之保護措施應該適用於現代通訊工具,所有設備儲存與傳輸之敏感性個資都應受到保護,而非僅限於被使用之個人資訊。 門檻提升 數據蒐集之法律標準需加強,提升隱私保護。 保存期限要求 除法律特別規定之保存期限外,相關通訊數據保存應於最短時間內刪除,通盤完整保留數據為不必要之風險。 強制協助命令 強制監督 關於電信商既已存在之標準,監視與保留通訊之數據,依據政府要求提供者,政府須解釋其合理性。 透明度 除加拿大電信商提供年度報告,政府單位依據合法授權來請求加拿大客戶數據之情況下,應有相關報告以示公平。 二、政府管理政策與產業治理之有效性衡平 鑑於資訊技術與商業模式蒐集數據為不透明,普通消費者根本無從得知個人資訊是如何被取得及利用分享,當事人較難根據資訊來識別問題,亦難區別是否當事人是否為有效性之同意,故加拿大隱私專員辦公室認為其應該有權審核或檢查電信業者使用技術範圍內之事務,以確保現實情況與隱私法規範保護一致。故應使加拿大隱私專員辦公室能與其他聯邦監管機構(Canadian Radio-television and Telecommunications Commission, CRTC加拿大廣播電視和電信委員會與加拿大競爭局)共享資訊,並授予加拿大隱私專員辦公司發布命令與實施行政罰鍰之權力,且允許其進行積極之合規性審查。 三、立法設計中應包含消費者保護、權利行使及可及性 加拿大人民享受數位經濟帶來之好處,同時希望個人資訊之利用為無疑慮地,人民相信政府及立法機關會做好保護措施。惟目前加拿大之隱私立法仍為相當寬鬆,近期相關數據洩漏事件亦已證實電信公司無法善盡管理負責任,透明度與問責制度皆不足,相關消費者保護與權利行使皆須更完善,並需要更多資金進行改善。 加拿大個人資料保護和電子文件法(Personal Information Protection and Electronic Documents Act, PIPEDA)個資隱私法下,公司或組織於所提供服務相關時,可獲取、使用及共享資訊,但在提供服務之資訊外,尚有許多資訊共享於其他目的。電信公司蒐集日常生活資訊,針對敏感性個資,隱私法規範為明確的,但若個人數據非敏感性,則會帶來許多隱含空間,當事人是否為有意義之同意?加拿大隱私專員辦公室認為他們應該要有更多法律權力,透過執法確保電信數據生態系統之信任,並整合聯邦與省之法規。政府與業者創新使用數據皆能受到監管,於事件未發生時,則有前端監督其合規性,將使市場有明確性,且能向人民進一步保證其關注將獲得解決。
美國歐盟貿易和技術委員會發布第四次聯合聲明,強化高科技技術及貿易安全合作美國歐盟貿易和技術委員會(Trade and Technology Council,簡稱TTC)第四次部長級會議於2023年5月31日發布聯合聲明。TTC繼續作為美國和歐盟對俄羅斯在烏克蘭戰爭中協調及有效反應的平台,處理包括與制裁相關的出口限制、打擊外國資訊操縱和干擾,以及破壞人權並威脅到當事國及第三國民主制度的運作和社會福祉等議題。 本次TTC聯合聲明之五大議題重點介紹如下: (1)強化跨大西洋新興技術合作以實現美歐共同領導:包括監控與衡量現有和新出現的人工智慧風險;發展智慧電網下智慧移動標準及互通性(Interoperability);提升半導體供應鏈的合作,包括鼓勵研發、資訊共享;建立工作小組共同處理量子技術問題。 (2)促進貿易及投資的永續性與新機會:乾淨能源補助;避免關鍵礦物供應受地緣政治影響;藉由數位工具提升貿易便捷的合作;相互承認醫藥品製造實務作法等。 (3)貿易、安全和經濟繁榮:出口管制與制裁相關出口限制的合作;交換對於與國安風險有關的特定敏感技術及關鍵設施投資審查的看法;重視對外投資管制,以保護敏感技術不流於對國際和平與安全有疑慮的用途;討論非市場政策與實務、及經濟脅迫(Coercion)的威脅與挑戰。 (4)連結性(Connectivity)和數位基礎設施:加速合作發展6G無線通訊系統;國際連通性與海底電纜計畫。 (5)在不斷變化的地緣政治數位環境中捍衛人權和價值觀:建構具透明性與可問責之線上平台;處理在第三國進行外國資料操縱與干預議題。 TTC將透過各工作小組,持續關注、研究上述議題的發展,並預計於2023年底於美國再次召開會議,檢視合作的成果。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現