美國參議院通過「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008)

  美國參議院以95對0票通過了「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008),該法案主要是為了增補「2007年基因資訊平等法」(The Genetic Information Nondiscrimination Act of 2007)所制定。

 

  「2008年基因資訊平等法」的內容主要為:1.保險業者不得基於被保險人的基因資訊,拒保或是提高保費,也不得要求被保險人提供其基因資訊以供保險用途,除非符合該法的例外規定。2.雇主不得以員工的基因資訊來限制、隔離、分級員工的工作,更不可據此來剝奪員工的工作機會。但是,本法所稱的基因資訊不包含個人的性別與年齡。

 

  在本法通過之前,美國已有41個州立法保護個人的基因資訊被保險公司使用,並且進行不平等的對待;另有32個州立法保護員工因為基因資訊,兒在工作場合受到歧視。美國並於2000年發佈行政命令(Executive Order 13145),禁止利用基因資訊歧視聯邦單位的員工;另外,「1996年醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act of 1996, HIPAA)也針對歧視做了若干的保護,但是仍有許多漏洞,諸如沒有限制保險公司收集被保險人的基因資訊,或是沒有禁止保險公司要求被保險人進行基因檢測等,所以觀察家認為本法的通過對於個人權利保護是一項進步,但是遺傳病醫藥業者與研究者卻憂慮本法阻礙了醫療研究的發展。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國參議院通過「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2804&no=55&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
對AI下達複雜、反復修改指令不算創作行為? —美國著作權局發布AI著作權報告第2部分:可受著作權保護性

.Pindent{text-indent: 2em;} .Noindent{margin-left: 22px;} .NoPindent{text-indent: 2em; margin-left: 38px;} .No2indent{margin-left: 54px;} .No2Pindent{text-indent: 2em; margin-left: 54px} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 對AI下達複雜、反復修改指令不算創作行為? —美國著作權局發布AI著作權報告第2部分:可受著作權保護性 資訊工業策進會科技法律研究所 2025年02月10日 由於生成式AI是根據使用者輸入的提示或稱指令(prompts),依機率分布推算生成出最有可能出現的結果,因此有人戲稱AI在每次生成時都是在隨機進行「擲骰子」,即便相同的提示也可能會得到有差異的輸出結果。為應對AI回應的不確定性和多樣性,如何下達提示,有效使用AI,為必須學習的課題。因此,有人說訓練不了人工智慧?我們可以訓練自己,但用心思考精準有效指令,費心對AI生成結果進行反復修改,就能取得著作權保護嗎?美國著作權局提出的看法,或許與大家的期待不同。 壹、事件摘要 美國著作權局今(2025)年1月發布AI著作權報告的「第2部分:可受著作權保護性(Part 2: Copyrightability)」[1]。為幫助評估AI著作領域的立法或監管措施是否必要,該局於2023年8月即發布「著作權與人工智慧議題徵詢通知(Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence)」,對外尋求對包括涉及使用受著作權保護的作品來訓練AI模型的問題、適當的透明度與揭露程度受著作權保護的作品的使用以及AI生成內容的法律定位等問題的意見[2]。在分析AI引發的著作權法與政策問題的意見徵詢結果後,美國著作權局於2024年7月31日,以數位複製物(digital replicas)主題,發布「著作權與人工智慧分析人工智慧引發的著作權法和政策議題」(Copyright and Artificial Intelligence analyzes copyright law and policy issues raised by artificial intelligence)報告的第1部分[3],並隨後於今(2025)年1月發布報告的「第2部分:可受著作權保護性(Part 2: Copyrightability)」[4]。 此報告指出現有的法律原則可根據個案判斷是否具有足夠的人為貢獻,有足夠的彈性足以解決關於AI生成內容是否具有著作權的問題,並不需要修法;當人工智慧被用作工具,且人類能夠決定作品的表達元素時,對AI生成結果的創意選擇、協調或安排,以及對生成結果的創意修改,都可獲得著作權保護;但目前使用者即使給予AI詳細的提示,也無法控制AI如何生成內容,不足以使其成為「作者」;著作保護仍須以人為創意投入,既有法令已足以激勵AI發展,沒有理由為AI生成的內容提供額外的著作權或特殊權利保護。 貳、重點說明 一、AI系統的輸出存在不可控制性[5] 當前生成式AI系統的輸出可能包括未指定的內容,在有數十億個參數的模型構建的複雜AI系統下,特定提示或其他輸入對於AI生成內容的影響存在不確定性,即使是專家研究人員在理解或預測特定模型行為的能力方面也受到限制。不僅AI生成的內容會因請求而異,而且即使具有相同的提示也是難以預測的,即使有AI系統例如Midjourney允許使用者控制生成一致的結果,在重複相同的提示時收到幾乎相同的圖像,然而即使如此也無法保證完美的一致性。 二、有辛勤努力、指示建議不等於有創造性貢獻 (一)無法僅因時間和努力而獲得著作權保護,它需要原創性 (originality),無論原創性有多麼低微 美國的著作權保護限於人類的創作(human authorship) 沒有任何法院承認非人類創造(non-human creation)的著作權。當然在使用AI的大多數情況下,人類將參與創作過程(creation process),並且在他們的貢獻符合創作資格的範圍時,能使其作品具有著作權。美國上訴法院(Supreme Court)明確表示,需要的是原創性 (originality),而不僅僅是時間和努力。在「Feist Publications, Inc. v. Rural Telephone Service Co.」案中,法院否定僅憑「血汗」(sweat of the brow)就足以獲得著作權保護的主張,但法院也認為絕大多數作品都很容易達到標準,因為所需的創造力水平極低;即使是很小的量、無論多麼粗糙、卑微或顯而易見都無妨(no matter how crude, humble or obvious’ it might be.)[6]。 (二)使用機器作為工具並不會否定著作權保護,如果作品已包含足夠的人類創作表達元素(human-authored expressive elements) 對於AI工具的使用是否影響著作權保護,美國著作權局提及在「Burrow-Giles Lithographic Co. v. Sarony」案中,法院將「作者」定義為「任何事物起源的人、創始人、製造者、完成科學或文學作品的人。(he to whom anything owes its origin; originator; maker; one who completes a work of science or literature.)」。法院確定了即使是使用照相機,攝影師也有許多創造性貢獻,包括將主題置於相機前,選擇和安排服裝、窗簾與其他各種配件、安排主題以呈現優雅的輪廓,以及喚起其所需的表情[7]。因此能否受保護的重點不在於有無使用工具,而是創造性投入的有無。 (三)「作者」必須是實際創作作品,即將想法轉化為有形呈現的表達的人,不包括只是提供詳細的建議和指示或做無實質改變轉換的人 美國著作權局在報告中指出,上訴法院在「Community for Creative Non-Violence v. Reid, "CCNV"」案中,認為:繪製設計草圖和以有形的表達媒介實現創意,使藝術家成為作者。該案的哥倫比亞特區巡迴法院明確表示,委託雕塑並提供詳細的建議與指示是不夠的,因為此類貢獻構成不受保護的想法,其不能因此成為雕塑的共同作者。而第三巡迴上訴法院在「Andrien v. Southern Ocean County Chamber of Commerce」案中, 認為原告「明確指示了副本的準備工作的具體細節」,因此「編譯只需要簡單的轉錄即可實現最終的有形形式」。因為印刷商「沒有實質改變原告的原始表達(original expression)」,法院裁定原告是「作者」[8]。 因此,該局認為儘管人工智慧生成內容不能被視為使用者與人工智慧系統的共同作品(joint work),但對於是否貢獻足夠的表達以被視為作者,提供有用的類比—僅僅向作者(AI)描述委託作品應該做什麼或看起來像什麼的人,並不是著作權法意義上的共同作者。 三、AI的創作輔助使用 美國著作權局同意,使用人工智慧作為輔助創作作品的工具與使用人工智慧作為人類創造力的替代品之間存在重要區別。雖然增強人類表達的輔助使用不會限制著作權保護,但認為需要進一步分析下列三種使用方式的差異: (1)指示人工智慧系統產生輸出的提示(prompts); (2)可以在人工智慧生成內容中感知到的表達性輸入(expressive inputs) (3)對人工智慧生成內容進行修改或安排(modifications or arrangements)。 (一)指示人工智慧系統產生輸出的提示(prompts) 由於欠缺對生成結果的控制能力,使用者即使輸入複雜的提示指令亦無法讓其成為「作者」[9]。提示本質上是傳達不受保護的思想,雖然高度詳細的提示可以包含使用者所需的表達元素,但目前的AI技術無法僅靠提示即能給予使用者足夠的人工控制,所以AI 系統的使用者無法成為生成內容的「作者」。雖然在輸入提示可以被視為類似於向受委託創作的藝術家提供指導,但在人與人之間的合作,委託者能夠監督、指導與理解受委託的人類藝術家的貢獻,但這情況目前不存在於人與AI的合作。或許將來可允許使用者對AI的生成內容取得完全的控制權,讓AI的貢獻變成固定或機械化(rote or mechanical)。 由於提示與結果輸出之間的差距,以及相同的提示可以生成多個不同生成內容的事實,進一步表明使用者缺乏對將他們想法轉換為固定表達的控制。而反覆修改提示不會改變、也無法為取得著作權提供足夠的依據,因為著作權保護的是作者身份,而不是辛勤工作。而且美國著作權局認為輸入修改後的提示與輸入單個提示在作用上似乎沒有實質性區別,對過程的控制程度都沒有改變。 不過,有些評論意見舉自然攝影作品做類比,認為即使攝影家無法控制野生動物何時進入畫面,這些作品也可能有資格獲得著作權保護。但美國著作權局認為,這與AI生成不同—攝影家的創作過程並沒有結束於他對作品的想法,其在照相機中控制角度、位置、速度和曝光的選擇,且可能進行作品的後製調修。該局指出「從(AI系統)提供的選項(生成結果)中進行選擇」不能被視為受著作權保護的作者身份, 因為「單一輸出的選擇本身並不是一種創造性的行為」。但該局也表示有時提示可以充分控制AI生成內容中的表達元素,如果AI技術進一步為使用者提供表達元素的更多控制,則結論可能會不同。 (二)富有表現力的輸入(Expressive Inputs)[10]與純粹指令不同 目前AI 系統接受以文本、圖像、音訊、視頻或這些內容形式的輸入,而可以將輸入保留成生成內容的一部分,例如修改或翻譯受著作權保護的作品。這類型的輸入,雖然亦可視為不同形式的提示,但與僅僅是傳達預期結果的提示不同。它所給的不僅是一個概念,更重要的是它限制了AI生成內容的「自主性」。因此可能提供了「更具說服力的人工干預」,而不是簡單的「將提示應用於未知的起點」。美國著作權局認為一個人輸入自己受著作權保護的作品,如果該作品在生成的內容中是可察覺的(perceptible),那麼他至少是該部分生成內容的「作者」。此類 AI 生成輸出的著作權將涵蓋可察覺的人類表達,包括可能涵蓋到作者對作品素材(material)的選擇、協調和安排。 (三)修改或安排(Arranging)AI生成的內容仍可受保護[11] 美國著作權局於報告中指出,使用 AI 生成內容通常是一個初始或中間步驟,如同其AI 註冊指引的說明—「人類可以以足夠創造性的方式選擇或安排 AI 生成的內容,以使最終作品整體構成一個作者的原創作品(the resulting work as a whole constitutes an original work of authorship)」。人類可以藉由修改AI生成的內容,使其達到符合著作權保護標準的程度,如果人類作者以創造性的方式選擇、協調和安排 AI 生成的內容,應該能夠主張著作權。例如:Midjourney 提供「Vary Region and Remix Prompting」,允許使用者使用提示來指定生成圖像的區域。美國著作權局認為此類可以讓使用者控制各個創意元素的選擇與放置的修改,是否達到最低原創性標準雖將取決於具體個案情況。但其認為就生成的內容位置可控制的案例,與純粹提示(prompts alone)情況不同,生成的內容應該受著作權保護。 參、事件評析 在美國著作權局公布其該報告之後,有網路媒體[12]以「美國著作權局定調:光靠提示詞的純AI生成圖片無法享有著作權保護,無論你下多複雜的提示詞都沒有」的標題,詮釋該報告的主旨。確實美國著作權局於該報告中,特別指出下達複雜與反復的提示,並不會影響著作權保護的取得與否的判斷。但關鍵點不在於提示本身,而是對AI生成結果的「可控制」(或可說是AI對生成結果的自主)程度。 對於AI生成結果的著作權保護,經濟部智慧財產局曾以電子郵件1070420號函指出:「著作必須係以自然人或法人為權利義務主體的情形下,其所為的創作始有可能受到著作權的保護。據了解,AI(人工智慧)是指由人類製造出來的機器所表現出來的智慧成果,由於AI並非自然人或法人,其創作完成之智慧成果,非屬著作權法保護的著作,原則上無法享有著作權。但若其實驗成果係由自然人或法人具有創作的參與,機器人分析僅是『單純機械式的被操作』,則該成果之表達的著作權由該自然人或法人享有。」,但何謂「單純機械式的被操作」?以複雜與反復的提示再擇取AI符合所需的AI修改結果,是否屬之?在目前AI工具朝向「自動化」發展的趨勢下,使用者下達提示後,多只須被動的對單一的生成結果,決定是否接受或重新下達指令,使用者只是以指令提出需求,實際的「創作行為」主體其實是AI而非人類。因此,美國著作權局於此報告中更進一步的說明使用者即使有複雜與反復的提示且有意的選擇特定結果,並不能就認定為「對結果有控制權」的創作。必須其結果可為使用者主導、控制,而非被動決定是否接受。 相對而言,在創作的保護實務上,美國著作權局告訴我們的是,人類仍然可以藉由在使用過程提高對AI生成結果的控制程度,以及生成內容的後製,使結果符合著作權保護標準。AI使用者應該盡量使用有提供具體修改控制功能的AI工具,只要有人為的事後修改,或使用過程中能具體主導AI生成的結果,我們仍然可以透過複雜與反復的提示AI,取得受著作權保護的生成結果。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 2: Copyrightability, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-2-Copyrightability-Report.pdf [2]US Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last visited Feb. 10, 2025). [3]US Copyright Office, Copyright Office Releases Part 1 of Artificial Intelligence Report, Recommends Federal Digital Replica Law, https://www.copyright.gov/newsnet/2024/1048.html (last visited Feb. 10, 2025). [4]U.S. Copyright Office Copyright and Artificial Intelligence, supra note 1. [5]詳前註1,頁5~7。 [6]詳註1,頁8。 [7]詳註1,頁9。 [8]詳註1,頁9。 [9]詳註1,頁18~21。 [10]詳註1,頁22~24。 [11]詳註1,頁24~27。 [12]電腦王,美國著作權局定調:光靠提示詞的純AI生成圖片無法享有著作權保護,無論你下多複雜的提示詞都沒有,https://www.techbang.com/posts/121184-the-us-copyright-office-has-set-the-tone-that-purely(最後瀏覽日:2025/02/10)。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

加拿大政府致力捍衛個人資料隱私

  加拿大財政委員會主席克萊門(Tony Clement),概述了加拿大政府對於保護加拿大公民隱私的步驟,並詳細的列出政府機關官員對於隱私保護違犯行為的案件量。   政府對於看待人民隱私保護這件事情是非常重視的,特別是如何妥當的處理具敏感性個人資料的這個部分,我們認為是關鍵性的重點」部長克萊門表示。   人力資源及技能發展部部長芬蕾(Diane Finley)說:「我們對於所有違犯事件都會非常認真的面對,任何錯誤都是不能被接受的,為了預防和對抗將來可能發生的事故,我已經下達指示要求徹查本部門下所有員工處理個人資料的作業程序、更新網路防護機制以禁止入侵,機關人員需接受強制性的教育訓練,學習如何處理敏感性和個人資訊。我們政府一直持續推動保護個人資訊的安全維護措施、強化隱私保護、當有任何事故發生時,會執行嚴格的通報機制及規劃完善的應變措施」。   自2006年以來,政府所採取加強隱私保護,並實行嚴格通報機制的新興措施包括:   1.向隱私權委員會通報隱私侵害事故,並採取迅速措施進行解決   2.完成隱私衝擊評估,以建置新的或實質性修正相關措施與行動   3.徹底落實隱私權保護措施命令,要求所有聯邦政府機構必須建置解決侵犯隱私事件的應變計畫   4.制訂隱私權保護政策,要求所有聯邦政府機構,若發現有任何可能侵害加拿大公民隱私的行為時,必須立即通知隱私權委員會辦公室   5.為因應各類新型侵害隱私權之事件,應持續建立新的應變指引,協助各機構有統一的辨識標準和阻止措施。   「在最新年度報告中,隱私權委員會指出,退伍軍人事務局已經明確的公告隱私權保護是現階段非常重要的業務項目,該局正積極建立相關維護措施和計畫。」布萊尼部長表示。   「我們將繼續努力,與隱私權委員會辦公室密切合作,確保加拿大公民的隱私權保護」,部長克萊門回應道

美國合夥團體近期發展報告—由近10年有限合夥等團體資產與數量走勢談起

美國合夥團體近期發展報告—由近10年有限合夥等團體資產與數量走勢談起 科技法律研究所 法律研究員 劉得正 101年4月26日 壹、前言   根據美國最新 (2011) 公布「國內稅收收入統計報告書」 (Internal Revenue Service Statistics of Income Bulletin Fall 2011 Washington, D.C. )[1]顯示,2000年至2009年間,美國有限合夥(Limited Partnership,LP)等合夥團體在數量與資產分佈上,有重大改變,簡要分析說明如下。 貳、美國有限合夥發展現況 一、各類合夥團體[2]總體數量呈現穩定成長   查美國國稅局最新 (2011) 發表之統計資料發現,至目前為止合夥團體仍就受到投資者的青睞。至2009年為止,以合夥身分報稅之企業,共計[3]3,168,728家,合夥人總數達21,141,979人,其申報擁有之總資產 (assets) 則達到約18.8兆美元。相對於2008年[4],合夥團體數量成長約2萬餘家,成長幅度0.7%;合夥人總數增加184萬餘人,成長幅度9.5%。值得注意的是,這是在2008年次級房貸風暴發生後,第二年成長幅度在1%左右,在2000年至2007年間,合夥數量成長幅度在3.6%-8.5%間。   數據顯示資產在1億美元以上的合夥團體,共有1萬8千餘家,占合夥團體申報資產72.3%,表示在美國合夥團體絕非僅受中小企業的偏愛。另外,若從行業別來看[5],金融保險業之合夥團體申報資產占全體54.4%,位居第一;其次為不動產相關業,占全體之23.7%。 二、有限合夥數量持平而獲利維持優勢   在所有以合夥身分報稅之團體中,有限合夥LP此種合夥形式,仍表現十分亮眼。在盈利 (Profits) 表現上,有限合夥2009年盈利金額[6]約達1393億美元,占全部合夥團體盈利34%。事實上自2000年起,有限合夥LP盈利金額占合夥團體總獲利比例,始終維持在31%-39%間。   至於在數量上,有限合夥LP則表現持平。2000年至2005年間,有限合夥數量以和緩幅度上升,2006年起則略微下降;以2008年至2009年間為計[7],有限合夥LP數量別為411,698家與396,611家,占總數12.5%。 三、有限責任公司(Limited Liability Company, LLC)數量大幅成長   相對於有限合夥LP在盈利上的表現,有限責任公司LLC則在數量上有驚人表現。2009年間有限責任公司LLC數量達到1,969,446家,占合夥團體總數62.2%[8]。與2008年相比,成長幅度達到3.8%[9],遠高於合夥團體總成長幅度0.7%。事實上自1995年起,有限責任公司LLC的數量每年皆有大幅度成長。2009年與1995年相比,有限責任公司LLC數量成長達15倍以上。且自2002年起,有限責任公司LLC數量便占合夥團體總數量50%以上[10]。   至於在盈利 (Profits) 方面,有限責任公司2009年則達到約889億美元。相較於有限責任公司LLC在數量上占總數62.2%,獲利量則僅占所有合夥團體21.6%[11],主要原因為其損失比例過高所致[12]。惟值得注意的是,在2008年發生次級房貸風暴前,有限責任公司LLC盈利占全體合夥團體比例亦約在3成左右,與有限合夥相近。但在2008年有限責任公司盈利則下降為11%左右[13]。 四、普通合夥( General Partnership, GP)數量快速萎縮   另一項常見的合夥團體,為全體合夥人負無限責任之普通合夥GP。觀察本次統計發現,在2009年間,普通合夥GP數量為624,086家,相較於2008年669,601家,下降6.8%。且與1995年1,167,036家相比,更下降53.5%。顯見普通合夥GP在數量上呈現快速萎縮之趨勢,而逐漸不受到美國投資者的青睞[14]。至於在盈利表現上,除2009年約為621億美元外,2000年至2009年間皆在700-900億美元間起伏。 參、趨勢分析   針對上述針對美國近期合夥團體發展之歸納,本文提出下列看法: 一、稅制改變造成有限責任公司LLC數量成長   依據美國稅法規定,一般公司(Corporation)與合夥團體最大的差異在於,一般公司(Corporation)具備課稅主體地位,而公司在課稅後 尚須就股東個人所得再次課稅,形成雙重課稅(Double Taxation)。反之,合夥團體採單層課稅(Pass Through Taxation)方式[15],多半情況下納稅價額較低。因此,有限合夥LP等相關合夥組織過去十分受到投資人喜愛。   相較下,有限責任公司(LLC)之定位究竟屬於一般公司法人(C corporation)或是合夥,在發展初期並不明確,而未受到投資者廣泛運用。但此情況在1996年改採「勾選原則」(Check The Box Rule)後有了改變。在勾選原則下,除權益得公開交易之企業必須以一般公司法人(C corporation)方式課稅外,容許非公司型組織(unincorporated entities)可以自由選擇稅制[16]。此稅制上的改變,使得有限責任公司LLC得排除雙重課稅的不利,而享有合夥團體單層課稅之優惠。本文推測,1996年起有限責任公司 LLC 在數量上大幅度的成長,應係與此有關。 二、有限合夥LP在金融投資相關行業的運用未受影響   從數據上看來,相較於有限責任公司LLC數量的大幅提升,有限合夥LP則未出現明顯的排擠效益。有限合夥LP數量持續維持在40萬家左右。且如前述所提,有限合夥LP擁有相當高的獲利能力 ( 高達1393億美元 ) ,而深入觀察可發現,當中包括創業投資等「其他金融投資活動」 (Other financial investment activities)[17]獲利高達716億美元[18]。顯見 有限合夥LP在金融投資相關產業仍具有關鍵重要性。   從本次美國所提出的稅收統計報告可以發現,毋論是有限合夥LP抑或是有限責任公司LLC之組織形態,在未來都將具有相當重要性。面對如此之發展,我國實應思考立法開放此等新型態商業組織之可能。因唯有商業組織多元化的發展,才有機會使更多投資者找到符合其個人需求之投資模式,將資金投入市場,進而促進資金的流通與經濟的發展。在面對全球化的今日,各國間無不為吸引資金進入,爭相採取不同開放手段的此刻,謹慎而適度地開放商業組織政策,將能為國家競爭力帶來深遠的助益。 [1]Nina Shumofsky & Lauren Lee, Partnership Returns, 2009 , Internal Revenue Service Statistics of Income Bulletin Fall 2011 Washington, D.C. 68 (2011). [2]此處合夥團體是指依據美國國內稅法 (Internal Revenue Code, IRC) Subchapter K納稅之企業。依據IRC規定,商業團體報稅時,需依據其組織性質不同,分別按Subchapter C、Subchapter S、Subchapter K進行報稅。原則上一般公司 (Corporation) 應依據Subchapter C申報;符合Subchapter S條件之公司 (Corporation) 則可依Subchapter S申報,亦即俗稱之S公司;至於其他非公司 (Corporation) 之企業,則可依據「勾選原則」(Check The Box Rule)選擇依Subchapter C 或 Subchapter K進行報稅,包括有限合夥、普通合夥、有限責任公司、有限責任合夥、有限責任有限合夥。其中有限責任合夥是指在普通合夥基礎下,使普通合夥人無需為其他合夥人不當或過失行為負責之組織;如是在有限合夥基礎下,賦予普通合夥人此有限責任範圍,則為有限責任有限合夥。 See Internal Revenue Code, 26 U.S.C. §§ 1-9834. (2012) [3]Nina Shumofsky & Lauren Lee ,supra note 1, at 84. [4]id., at 70. [5]id., at 72. [6]惟其金額卻由2008年約1782億美元,下降為1393億美元,Id., at 156-7. [7]Id., at 156-7. [8]Id., at 73. [9]Id., at 68. [10]Id., at 73. [11]Id., at 75. [12]Id., at 151. [13]Id., See Figure I, at 75. [14]至於以普通合夥為基礎所衍生的有限責任合夥,在數量上至2009年間僅達到117,660家,並未因普通合夥下降而大幅提升。See id ., at 157. [15]參見羅怡德,〈美國「有限合夥」之介紹與討論〉,《社經法制論叢》,第6期,頁193以下(1990)。 [16]Robert W. Hamilton著,齊東祥譯,《美國公司法(The Law of Corporations)》,法律出版社,第5版,頁26-27 (2007)。 [17]依據北美行業分類系統 (The North American Industry Classification System, NAICS) 定義,「其他金融投資活動」 (Other financial investment activities) 係指:1.除銀行、證券商、商業契約經銷商外,其他買賣金融契約之主體;2.除證券商、商業契約經紀人外,其他買賣金融契約之代理人或經理人;3.除證券商或商業契約經銷商外,提供其他投資服務,包括投資組合管理、投資諮詢、信託、保管服務等。available at http://www.census.gov/cgi-bin/sssd/naics/naicsrch?code=5239&search=2007%20NAICS%20Search (last visited 04/18,2012) [18]supra note 1, at 156.

TOP