Klausner Technologies已結束2007年12月針對蘋果(Apple)與共同合作AT&T公司發起的專利訴訟案,並將專利技術以授權方式予Apple及AT&T。
Klausner Technologies具有視覺語音郵件(visual voice-mail)技術所衍生產品與服務,並在美國及其他國家申請並已獲得多項專利。Klausner Technologies認為Apple 所生產iPhone手機的觸摸屏介面設計,其視覺語音郵件功能,類似像電子郵件收發匣,可呈現所有已接收的語音郵件,並可讓使用者依個人喜好隨意指定郵件的排列順序與瀏覽方式,其功能與Klausner Technologies於2004-2006年間所申請專利技術雷同。故2007年底對Apple與AT&T發出專利訴訟,並請求3億6仟萬美元的賠償與預期未來使用權利金。本案最終在美國德州東區地方法院以和解方式結束,然而和解相關詳情尚未對外公布。
Klausner Technologies於控告Apple與AT&T前,已經與數家公司簽署視覺語音郵件技術授權合約,包括時代華納的AOL與VoIP網路提供商Aonage公司;亦對Comcast,Cablevision及eBay等三家公司提起訴訟,指出其VoIP產品,侵犯Klausner Technologies所申請關語音郵件的專利,並請求賠償與使用權利費用共計3億美元。依路透社報導,eBay已同意接受以授權方式取得語音郵件技術。
韓國政府在今(2019)年1月立法施行四種監理沙盒機制(규제샌드박스),包含「金融監理沙盒」、「資通訊(ICT)監理沙盒」、「產業融合監理沙盒」及「地方專業化特區」機制,於施行半年後在同年7月16日公告成果報告,未來監理沙盒將加強尋求社會共識與區域衡平發展。 韓國為推動「製造業創新3.0」(제조업혁신 3.0)政策,強化產業創新與競爭力、重點發展人工智慧及物聯網,並打造友善法制環境來減少監管障礙。因此以鬆綁法規與鼓勵創新為目的,由韓國國務總理室於2018年初統籌各相關部會機關規劃全國性之監理沙盒機制,而於同年年底國會修正通過以下法律,泛稱「管制創新五法」(규제혁신 5법): 《資通訊融合法》(정보통신융합법),由「科學技術資訊通訊部」主管,建立「ICT監理沙盒」,鬆綁資通訊相關規範為主要範圍。 《金融創新支援法》(금융혁신지원 특별법),由「金融委員會」主管,建立「金融監理沙盒」,作為金融規範鬆綁之依據。 《地區特區法》(지역특구법),由「中小企業創業部」主管,主要由地方政府提出並建立具地方特色的專業化特區,如共享經濟特區、能源特區等,透過特區鬆綁地方與中央法規,由地方政府主導、中央協助推動當地產業發展。 《產業融合促進法》(산업융합 촉진법),由「產業通商資源部」主管,就前述以外之產業建立監理沙盒機制。 《行政管制基本法》(행정규제기본법은),鬆綁上述四個監管與行政程序相關法律。 在施行半年以來,成果顯示已受理81件申請案例,企業規模以中小企業佔80%為大宗,而申請之產業領域多集中於金融科技領域(46%)、其次為非特定領域(32%)、資通訊領域(22%),並以共享經濟、區塊鏈、大數據、物聯網、人工智慧、虛擬實境(VR)、5G等創新產品或服務為主。在申請時程上,從受理案件至批准進行實證或發給臨時許可證允許在市場販售,僅須約44個工作天。而在法規鬆綁上,多數涉及法規命令與機關行政函釋層級。另外為鼓勵創新業者申請監理沙盒,針對實證完成之產品或服務,將給予「優良採購產品」(우수 조달물품)證明,政府機關可於採購平台上優先採購該產品或服務。 另外成果報告說明,由於許多創新實證與現行社會體制與規範造成破壞式衝突,例如「共享廚房」與現有《食品衛生法》規定餐廳須有獨立廚房有違,或者消費者直接在家進行基因檢測(Direct-to-Consumer Testing, DTC)創新服務與現有醫療規範與體制不符等,韓國政府將透過客觀實證數據與宣導來尋求社會共識或使用其他替代方案來降低衝突。同時將於今年下半年由中央主導指定特定區域作為專業化特區,以衡平區域發展。
防制洗錢金融行動工作組織針對虛擬資產與其服務提供業者發布進一步監理指引防制洗錢金融行動工作組織(Financial Action Task Force on Money Laundering, FATF)為因應虛擬資產(Virtual Assets)對於打擊洗錢與資恐主義措施所帶來的衝擊,協助各國建立可供遵循的一致性標準,於2018年10月修改FATF建議書(The FATF Recommendations),定義「虛擬資產」與「虛擬資產服務提供業者」(Virtual Asset Service Providers, VASPs),將其納入國際洗錢防制之範疇。 為使各國監管機關依據FATF相關建議,正確評估與降低虛擬資產與VASPs所可能涉及的洗錢與資恐風險,有效進行管理並建立公平競爭的虛擬資產產業體系,FATF於2019年6月21日,針對建議書中第15點-新科技所可能隱藏的洗錢隱憂,加入解釋性說明,列出FATF對於虛擬資產和VASPs的應用標準,包含建議監管機關採取註冊或許可制度,以利進行監督與審查,而非透過自律組織方式進行督導,並與他國進行國際合作。以及為防止不法份子與其同夥擁有對VASPs的控股權(controlling interest)或管理職能(management function),各國主管機關須採取必要的法律或監管措施。另監管機構應有足夠權力監督並確保VASP遵守打擊洗錢和恐怖主義融資的要求,包括進行檢查,強制公開資訊和實施金融制裁。 FATF同時公布「虛擬資產與虛擬資產服務商之風險基礎指引」(Guidance for a Risk-Based Approach to Virtual Assets and Virtual Asset Service Providers),指導各司法管轄區如何應用風險基礎方法,針對虛擬資產相關活動與服務商,進行洗錢與資恐防制。相關主管機構在進行風險評估時,應考量特定的虛擬資產類型或VASP活動,了解其具體架構與運作在金融體系和國家經濟的作用,以及對洗錢與資恐防制的影響,將類似風險的產品或服務應用類似的監理原則處理,並針對虛擬資產的匿名性加強客戶識別機制。隨著VASP活動發展,主管機關亦應審視其他監管措施(如消費者保護、資訊安全、稅務等)與洗錢與資恐防制之間的關聯,進行短期與長期的政策擬定,以制定全面性的監管框架。 FATF預計於2020年6月開始啟動上述新審查機制,為期12個月,檢視各國對於前述具體要求之落實情況。以及持續與民間企業合作,共同探討虛擬資產的基礎技術、使用類型、相關業務模式。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
新加坡金融管理局發布《資料治理與管理實務》資訊文件新加坡金融管理局(Monetary Authority of Singapore,下文簡稱MAS)於2024年5月29日發布《資料治理與管理實務》(Data Governance and Management Practices: Observations and Supervisory Expectations From Thematic Inspections)文件。此文件係根據MAS於2022年至2023年期間針對國內系統性重要銀行(Domestic Systemically Important Banks,下文簡稱D-SIBs)進行「資料治理與管理架構」的主題式檢查結果加以研究與分析而作成,其內容包含MAS對於資料治理的期望、受檢銀行的優良實踐範例及缺失,希望未參與檢查的銀行與金融機構也能根據這份文件進行適當的改善措施。 MAS在《資料治理與管理實務》文件中提出關於五大主題的監管期待,簡要說明如下: 1.董事會和高階管理層的監督: 董事會和高階管理層應加強監督資料治理。例如,定期向董事會報告資料管理領域的重要問題;高階管理層應即時獲得準確且完整的相關資訊,並對資料風險進行分析。 2.設置資料管理單位: 銀行應建立資料管理單位,並為資料管理辦公室提供明確的任務授權,以利其監測資料的品質。 3.資料品質之管理與控制: 銀行應建立資料品質管理架構與流程,以確保資料在整個生命週期中是有品質的。例如,建立有效控制資料流的機制;建立資料品質指標或計分卡;使用終端使用者運算工具(end-user computing tools)處理資料時,應納入風險評估和控制架構來管理。 4.資料品質控制資料之問題識別與升級: 銀行應制定升級標準和行動計畫,以改善資料品質。另外MAS也建議銀行應該要有強大且完整的資料譜系(data lineage)來辨識資料問題並將之改善。 5.BCBS 239原則之擴大適用:BCBS 239原則係巴賽爾銀行監理委員會(the Basel Committee on Banking Supervision)第239號規範:《有效風險資料聚合及風險報告原則》(Principles for effective risk data aggregation and risk reporting),適用於全球的系統性重要銀行(Global Systemically Important Banks),巴賽爾銀行監理委員會同時建議D-SIBs宜遵循此原則,因此MAS亦要求新加坡境內7家D-SIBs須遵守BCBS 239原則的相關規範。此外,MAS仍期待各銀行與金融機構可以擴大BCBS 239原則的適用範圍,例如在範圍內報告(in-scope reports,或稱主要風險報告)中納入反洗錢、稅務管理等面向。由於金融服務是一個由資料驅動的產業,資料已然是金融業重要的戰略資產。MAS期盼這份文件能夠讓所有銀行及金融機構提升其資料治理能力,並針對內部的問題進行改善。