美國聯邦通訊傳播委員會(Federal Communications Commission, FCC)於今(2008)年初完成700MHz頻譜拍賣後,在8月份針對空白頻段(white space)中可用以抗干擾之技術進行測試,並於8月11日完成測試。完整的測試報告預計將在9月份公布。FCC並可望在未來幾個月內表決是否開放空白頻段。
所謂「空白頻段」係指無線電視數位化之後,位於各電視頻道之間未被使用之閒置頻段。Google、Motorola、Microsoft等公司近一、二年來持續遊說FCC開放空白頻段(white space)免執照使用,以促進無線寬頻服務之發展。
儘管數位無線電視台及Verizon等正使用該頻段之業者有干擾疑慮,然主張開放空白頻段之公司深信開放空白頻段對於新興無線寬頻服務之發展將大有助益,且透過感測技術(sensing technology)或地理定位科技(geolocation technology),即可使得無線裝置於使用空白頻段之同時,不至於干擾數位無線電視台或其他取得執照使用該頻段之業者。
關於試驗結果,無線麥克風業者Shure之資深公關經理Mark Brunner 表示,感測技術幾乎完全無法準確偵測使用中之無線麥克風或電視頻道是否正播送中,自然無法避免干擾發生。支持開放空白頻段之Motorola公司則表示,儘管感測技術無法避免干擾發生,但是Motorola所使用之地理偵測科技則在測試中被證實可有效避開正在使用中之頻段,避免干擾情況發生。
美國司法部起訴六名中國大陸公民,包含三名大學教授,在美從事商業間諜活動,自兩間科技公司竊取有關行動通訊技術的敏感資料,並已經提供中國大陸的大學及企業預備產製。如果罪名成立,最多可判刑15年。被竊取營業秘密包括載有薄膜體聲波共振器(FBAR)的原始碼、規格、配方等文件,主要應用在行動通訊,如平版、智慧型手機、GPS設備等消費性產品及軍事、國防通訊技術,其作用在於過濾無線訊號,改善通訊品質。 據報導,其中兩名被告張浩與龐慰為天津大學的教授,在美國南加州的一所大學攻讀電子工程學博士學位相識,期間獲得國防高等研究計劃署 (DARPA)提供的研究經費,研究FBAR技術。2005年取得學位後,分別進入Avago Technologies與Skyworks Solutions科技公司擔任FBAR工程師,並竊取分別屬於二公司的營業秘密。2006至2007年間,更開始接觸中國大陸的大學,尋找生產FBAR技術的可能性,最終得到天津大學支援,在中國大陸建立FBAR技術中心,更在2009年分別自二科技公司離職,擔任天津大學的全職教授,同時合資成立ROFS精密儀器公司,計畫生產FBAR產品,並已和企業和軍方簽訂契約。 美國政府表示,外國機構利用在美國活動的個人從事商業間諜活動,竊取美國企業投入高額成本開發的技術資料,將造成美國企業的重大損失,削弱市場競爭力,最終損害美國在全球經濟的利益,故將持續調查、蒐集不法證據,以打擊商業間諜活動與制止竊取營業秘密為首要任務。
既有建築改善翻新措施─德國政策參考既有建築改善翻新措施─德國政策參考 科技法律研究所 2013年07月11日 壹、事件摘要 內政部於6月20日公布資訊指出,我國為達成環境永續發展之目標,於1999年開始推行綠建築標章評估系統,迄今已有3,943件新建或既有建築,取得綠建築標章或候選綠建築證書,每年皆可有效節水與節電;同時,自2003年起,針對既有中央辦公廳舍及國立大專院校所辦理的改善翻新,亦具有顯著的節能減碳成果。 貳、重點說明 為因應全球暖化與氣候變遷問題,我國針對建築部門推動許多兼顧節能減碳與生態保護的綠建築政策。首先,內政部在1999年針對新建建築之規劃設計,訂定綠建築標章評估系統。行政院另於2001年3月核定「綠建築推動方案」,率先實施對公部門新建及既有建築之綠化工作,內政部並依據該方案實施方針第7條,推動「綠廳舍暨學校改善補助計畫」。接著,為了強化民間產業投入綠建築,行政院再於2008年1月核定「生態城市綠建築推動方案」,依據該方案實施方針第11條「辦理綠建築更新診斷與改造計畫」,繼續推動既有中央辦公廳舍及國立大專院校建築物之改善翻新。此外,為鼓勵民間既有建築參與綠建築改善,並於100年1月訂定內政部獎勵民間綠建築示範作業要點。 由上述政策發展可以看出,我國既有建築之改善翻新,乃循公部門先帶頭示範,再輔以對民間建築給予獎勵補助,與歐美等先進國家政策推動模式一致。 參、事件評析 根據統計,我國既有建築約佔全國建築總量97%,這些早期建造的建築物,於設計規劃之初皆未納入綠建築之概念。因此,雖然許多既有建築仍舊堪用,但建築本身卻普遍存在著高耗能問題。這使得推動既有建築進行改善翻新,提升其能源效率,成為一重要議題。而依內政部公布之資訊,公部門既有建築改善翻新獲得卓越之成效,確實令人欣喜。然而,公部門既有建築畢竟仍屬少數,故如何推動民間既有建築進行改善翻新,會是我國落實綠建築政策的關鍵。在此,本文將介紹德國政府之相關政策,希望能供我國作參考。 在既有建築改善翻新政策中,德國政府同樣先要求公部門建築必須進行改善翻新,以逐年降低其能源消耗量。與此同時,德國政府也認知到有超過75%的既有建築,至今仍未進行改善翻新。因此德國交通、建築暨都市發展部(Bundesministerium für Verkehr, Bau und Stadtentwicklung, BMVBS,簡稱交通部)推出了降低二氧化碳排放的建築改善翻新方案,不僅給予補助,更與德國復興信貸銀行(Kreditanstalt für Wiederaufbau, KfW)合作,提供改善翻新的低利率貸款。 今年6月1日,為了促進民眾積極採取「具體的」改善翻新行動,交通部與德國聯邦經濟暨技術部(Bundesministerium für Wirtschaft und Technologie, BMWi,簡稱經濟部)共同推出建築節能改善翻新的線上評估服務。讓民眾即使在家中,也可以進行節能與節省成本的行動。 該線上評估服務分為三大步驟,首先,必須輸入建築物的狀態。接著,便可以選擇欲改善翻新的項目及措施。最後,系統會產生整體改善翻新的結果,包括改善翻新前後的能源需求狀態、二氧化碳排放量,以及改善翻新所需經費,並提供聯邦、邦政府財政補助及KfW貸款方案的連結。 德國政府希望藉此向民眾傳達改善翻新的好處,在於節能、節省長期的能源成本,並增加建築物之價值。儘管德國政府在此線上評估服務網站上表明,評估結果僅供參考,並無法取代專業能源顧問的具體評估建議。然而,事先透過簡單、便利的線上評估,不僅增加民眾對於既有建築改善翻新的瞭解及興趣,更是進一步驅動民眾尋求專業評估的動力。 由此可知,節能減碳若要具體落實,全面性的規劃絕對是必要的。我國若能以德國的政策為借鏡,給予民眾更多關於既有建築改善翻新的協助,提供更多資訊。相信可以鼓勵更多民眾自主投入既有建築節能之行列,使我國綠建築政策獲得全面性的落實。
數位資產正式納入美國懷俄明州州法,並將虛擬貨幣視為金錢美國懷俄明州(Wyoming)於2019年1月18日提出S.F. 0125法案,經參眾議院三讀及州長簽署通過後,將在同年7月1日生效,代表數位資產(digital assets)正式納入懷俄明州州法第34編第29章。該法定義數位資產為表彰經濟性、所有權或近用權,並儲存於可供電腦讀取之格式(computer readable format)中,又區分為數位消費資產(digital consumer assets)、數位證券(digital securities)及虛擬貨幣(virtual currency)等三類。 數位消費資產,是指為了消費、個人或家用目的使用或購買的數位資產,包含:(1)除法律另有規定外,開放區塊鏈代幣(open blockchain tokens)視為個人無形資產(intangible personal property),(2)非屬本章數位證券和虛擬貨幣範圍內之數位資產;數位證券則是指符合懷俄明州州法第17編第4章有價證券定義的數位資產,但排除數位消費資產及虛擬貨幣;又,虛擬貨幣是指使用數位資產作為交易媒介(medium of exchange)、記帳單位(unit of account)或具儲存價值(store of value),且尚未被美國政府視為法定貨幣(legal tender)。 本次修法規定數位資產均為個人無形資產,另將數位消費資產視為該州州法下之一般無形資產,數位證券視為該州州法下之有價證券及投資性財產,虛擬貨幣則視為金錢,有論者表示本次修法有助於促進數位資產流通,並鼓勵各州跟進修法。然此舉是否有助於該州推行數位資產產業,尚待持續觀測,始能得知其對業界與政府監管所造成之影響。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。