本文為「經濟部產業技術司科技專案成果」
德國聯邦經濟暨能源部(Bundesministerium für Wirtshaft und Energie)、德國聯邦工業聯盟(Bundesverband der Deutschen Industrie)、德國工業與商務部(Deutsche Industrie- und Handelskammertag)及德國工藝中心(Zentralverband des Deutschen Handwerks)針對共同之目標擬定中型企業發展政策。該規劃於2015年7月23日柏林提出。該規劃重點為以下五個方針: 1. 企業精神培育(Gründergeist): 自1995至2014年德國新創企業的成長銳減30%。為要克服此問題,應讓德國學童在學校時就有「創業家」此一職涯選項。年輕的新創企業需要持續提升與企業合作與互動,並給予創新之顧問補助,像是新創顧問諮詢上的服務(該計畫名稱為Gründer Coaching Deutschland)。針對目前已經成立之中小型企業,相關補助及服務將自2016年會提出。 2. 數位化進程(Digitalisierung): 為提升中型企業的科學技術轉移,透過該計畫預計將在今年全德國新設立至5座技轉中心(Technologietransfer)。透過該中心,各個企業及工藝業者可得取有關產業面現狀發展、新興科技及商業模式的最新訊息,為讓其裝備成具數位化能力的業者。 3. 融資(Finanzierung): 透過歐盟投資及歐洲復甦基金(ERP/EIF)新興政策之發佈,將注入50億歐元用於輔助快速成長、資本集中之企業,以3至4百萬歐元的幅度做補助。此透過與歐盟投資銀行共同聚集的資金,將於2015年提供給企業申請。此次融資政策係歐盟投資及歐洲復甦基金從10億提升至17億歐元。 4. 勞工支配(Fachkräfte): 德國勞工的質量與優勢將透過「聯盟教育培訓計畫2015-2018(Allianz für Aus- und Weiterbildung 2015-2016)」做提升。每位年輕學子在就學期間,就應透過學校的輔助認清其就業路線,以助未來專業領域培訓及發展。「輔助中小型企業得取切合相關職業培訓及外來勞動力引入」補助計畫導入,目的亦係為讓德國勞動力更具優勢及競爭力。 5. 行政成本降低(Bürokratieabbau): 透過減免官僚程序法(Bürokratieentlastungsgesetz)的導入,將針對未來企業會計、紀錄、統計數據公開及回報的要求進行修改。此一法的導入將可讓德國中型企業7.44億歐元行政成本的減免。為了讓新創企業能夠更容易的開始營運,政府部門亦將更進一步的與業者接觸互動並連結,輔助新創企業中遇到創業程序上的服務及指導。透過相關行政程序的電子化管理,將可讓德國及至歐盟透過該新的管理標準省去過多的行政成本,並優化創業流程。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
德國向歐盟提交《人工智慧白皮書-歐洲卓越與信任概念》及《人工智慧,物聯網和機器人技術對安全和責任之影響報告》意見德國聯邦政府於2020年6月29日,針對歐盟執委會於2020年2月19日公布的《人工智慧白皮書-歐洲卓越與信任概念》(Weißbuch zur Künstlichen Intelligenz – ein europäisches Konzept für Exzellenz und Vertrauen)及《人工智慧,物聯網和機器人技術對安全和責任之影響報告》(Bericht über die Auswirkungen künstlicher Intelligenz, des Internets der Dinge und der Robotik in Hinblick auf Sicherheit und Haftung) 提交意見,期能促進以負責任、公益導向、以人為本的人工智慧開發及使用行為,並同時提升歐盟的競爭力及創新能力。 歐盟執委會所發布的人工智慧的白皮書及人工智慧對安全和責任的影響報告,一方面可促進人工智慧使用,另一方面則藉此提醒相關風險。本次意見主要集結德國聯邦經濟與能源部、教育與研究部、勞動與社會事務部、內政、建築及社區部以及司法與消費者保護部之意見。德國政府表示,投資人工智慧為重要計畫之一,可確保未來的創新和競爭力,以及應對諸如COVID-19疫情等危機。最重要的是,可透過人工智慧的應用扶持中小型公司。然而在進行監管時,必須注意應促進技術發展而非抑制創新。 在《人工智會白皮書-歐洲卓越與信任概念》中指出,人工智慧發展應在充分尊重歐盟公民的價值觀和權利的前提下,實現AI的可信賴性和安全發展之政策抉擇,並於整體價值鏈中實現「卓越生態系統」(Ökosystem für Exzellenz),並建立適當獎勵機制,以加速採用AI技術為基礎之解決方案。未來歐洲AI監管框架將創建一個獨特的「信任生態系統」(Ökosystem für Vertrauen),並確保其能遵守歐盟法規,包括保護基本權利和消費者權益,尤其對於在歐盟營運且具有高風險的AI系統更應嚴格遵守。此外,應使公民有信心接受AI,並提供公司和公共組織使用AI進行創新之法律確定性。歐盟執委會將大力支持建立以人為本之AI開發方法,並考慮將AI專家小組制定的道德準則投入試行階段。德國政府指出,除了要制定並遵守歐洲AI的監管政策外,應特別注重保護人民之基本權,例如個人資料與隱私、消費者安全、資料自決權、職業自由、平等待遇等,並呼籲國際間應密切合作,運用人工智慧技術克服疫情、社會和生態永續性等挑戰。另外,德國政府亦支持將人工智慧測試中心與真實實驗室(監理沙盒場域)相結合,以助於加速企業實際運用,也將帶頭促進AI在公部門之運用。 在《人工智慧,物聯網和機器人技術對安全和責任之影響報告》中則指出,歐洲希望成為AI、IoT和機器人技術的領導者,將需要清楚、可預測的法律框架來應對技術的挑戰,包括明確的安全和責任框架,以確保消費者保護及企業合法性。AI、IoT和機器人技術等新數位技術的出現,將對產品安全性和責任方面出現新挑戰,而在當前的產品安全法規上,缺乏相關規範,特別是在一般產品的安全指令,機械指令,無線電設備指令等,未來將以一致地在各框架內針對不同法律進行調修。在責任方面,雖然原則上現有法令尚仍可應對新興技術,但人工智慧規模的的不斷變化和綜合影響,將可能增加對受害者提供賠償的困難度,導致不公平或效率低下的情形產生,為改善此一潛在不確定性,可考慮在歐盟層級調修產品責任指令和國家責任制度,以顧及不同AI應用所帶來的不同風險。德國政府除了支持歐盟作法,在創新與監管取得平衡,更強調應不斷檢視產品安全和產品責任法是否可滿足技術發展,尤其是對重要特定產業的要求,甚至修改舉證責任。並可透過標準化制定,加速人工智慧相關產品與服務的開發。另外,應依照風險高低擬定分類方法,並建議創建高風險AI系統之註冊與事故報告義務,以及相關數據保存、記錄及資料提供之義務,針對低風險AI應用則採自願認證制度。
歐盟COVID-19疫情位置資料和接觸追蹤工具使用指引歐洲資料保護委員會(European Data Protection Board, EDPD)於2020年4月24日公布COVID-19疫情期間使用位置資料和接觸追蹤工具指引文件(Guidelines 04/2020 on the use of location data and contact tracing tools in the context of the COVID-19 outbreak),就針對COVID-19疫情期間,歐盟成員國利用定位技術和接觸追蹤工具所引發的隱私問題提供相關指導。 EDPD強調,資料保護法規框架於設計時即具備一定彈性,因此,在控制疫情和限制基本人權與自由方面可取得衡平。在面對COVID-19疫情而需要處理個人資料時,應提升社會接受度,並確保有效實施個資保護措施。然而資料和技術雖可成為此次防疫重要的工具,但此次的資料利用鬆綁應僅限用於公共衛生措施。歐盟應指導成員國或相關機構,採取COVID-19相關應變措施時,若涉及處理個人資料,應遵守有效性、必要性、符合比例等原則。本次指引針對利用位置資料和接觸追蹤工具的特定兩種情況,闡明其利用條件和原則。情況一是使用位置資料建立病毒傳播模型,並進一步評估及研擬整體有效的限制措施;情況二是針對有接觸史病患進行追踪,目的是為通知確診病人或疑似個案以進行隔離,以便儘早切斷傳播鏈。 EDPB指出,GDPR和電子隱私保護指令(ePrivacy Directive)均有特別規定,允許各成員國及歐盟層級公共單位使用匿名及個人資料監控新冠病毒的傳播,並呼籲透過個人自願性安裝接觸追蹤工具。