複製牛肉即將上桌?-複製動物作為食品之歐盟規範觀察

刊登期別
第20卷,第3期,2008年03月
 

本文為「經濟部產業技術司科技專案成果」

※ 複製牛肉即將上桌?-複製動物作為食品之歐盟規範觀察, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=2877&no=55&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
歐盟發佈「降低高速電子通訊網路建置成本」草案

何謂「TLO」?

  「TLO」係「技術移轉機關(Technology Licensing Organization)」之簡稱,專指大學研究成果申請專利後,將該等技術移轉給企業等之機關,如同產學間的仲介角色。   日本於平成10年(西元1998年)5月6日通過「促進大學等實施技術研發成果移轉給民間企業法(簡稱大學等技術移轉促進法或TLO法)」,目的在於將大學之研究成果技轉給民間企業,促進研究成果之實用化。   在承認TLO存在之同時,日本做了以下法令之配套:依據TLO法第8條,實施特定大學技術移轉之事業期間,第1年到第10年之授權金及專利申請審查手續費用減免1/2、產業競爭力強化法第19規定,若國家委託之研發成果,歸屬於受託者時,該研發成果之移轉授權不須經國家之承認、同時大學法人法第22條允許國立大學得為出資。同時TLO法亦承認若中小企業透過TLO取得研究成果之授權時,得降低中小企業投資育成株式会社支出資要件。

德國「促進智慧財產權保障落實法Gesetz zur Verbesserung der Durchsetzung von Rechten des geistigen Eigentums,Durchsetzungsgesetz」將於今年8月1日開始生效施行

  歐盟「Enforcement-Ricgtlinie 2004/48/EG指令」於德國國內法,而採取所謂「條款立法Artikelgesetz」之綜合立法方式*,包括「專利法」、「商標法」、「實用新型專利法」、「半導體保護法」、「外觀設計專利法」、「品種保護法」、「非訟事件費用法」以及「著作權法」等相關條文之修正。   其中涉及「著作權法」相關重要修正條文包括「他人資訊提供請求權」,主要是賦予著作權人在主張權利侵害時,得向ISP業者要求提供可以辨明侵權者之身分資料(§101 UrhG),惟須符合特定條件,例如,侵權者須有營業行為(in geweblichem Ausmaß)。然而,就何謂「營業行為」在立法過程中爭議迭起,最後達成協議,決定認定「營業行為」之判斷標準包括:上傳、下載或公開傳輸檔案的數量、電影影片是否為全片供下載、錄音專輯是否整張專輯均提供下載等。簡言之,判斷標準將交由司法單位自被下載檔案的「量」與「質」加以衡量。   不同於歐盟Enforcement-Ricgtlinie指令,新修正之著作權法規定在侵害利益輕微案件中,權利人得向侵權人主張存證信函相關費用之上限為100歐元(§97a UrhG),此規定目的在預防權利人相關費用的主張權利遭致濫用。惟於立法過程中遭權利人及律師代表極力反對,認為如權利人堅持捍衛其權利,則超過100歐元之費用部分需由權利人自行吸收,顯不公平。   在著作權保障意識高漲的現代,有關著作權侵害判斷標準以及賠償方式爭議不斷,德國著作權法亦在相關壓力下持續修正著作權法相關條文,擴大對著作權人之保護。這一波修正條文於8月1日正式施行後成效如何,值得後續觀察。 * 主要是將原本散落在不同法律規範中之條文,以組成「條款」的方式將修正的條文。立法過程完成後,該法的 「架構」是由各個「條款」所組成,而每個條款是代表一個(遭到修正之)法律條文。

美國情報體系發布「情報體系運用人工智慧倫理架構」

  美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。

TOP