日本特許廳(JPO)和中國人民共和國國家知識產權局(SIPO)於2011年10月18日合意簽署專利審查高速公路(Patent Prosecution Highway,PPH)試行方案。本方案欲藉由資源共享的方式,加快專利申請程序的官方審查期間。並預計於11月初開始施行,試行期間為期一年。透過這個方案,將使日本成為中國第一個PPH方案的合作對象。 隨著商業活動的全球性擴展,企業在各國獲取專利的需求性亦相對性地提升,造成單一申請案需個別向各國專利局申請的情況。因而造就全球性專利申請案件數量的攀升,以及專利審查期間的延長。為解決此問題,日本特許廳企圖以推行PPH模式,幫助申請人有效且及即時地獲取專利,以保障其國外專利權的行使。 傳統上大陸知識產權局審理日本專利申請案,通常需要經過二至三年的審查期間,透過這個試行方案,審查期間可望縮減至半年。 日本特許廳預計,這個方案將使日本企業以更迅速且有效的方式,保護其在中國的技術,進而協助日本企業順利地在中國經營商業活動。日本特許廳廳長表示,國際專利合作案不應該是種妥協,相反地,我們需要尋求一種可創造雙贏局面的新方式。 至於大陸方面,則預計與其他國家,如美國及南韓,簽署建立PPH的合作方案。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
英國成立英國衛生與社會照護資訊中心整合政府醫療資訊隨著英國國家健康服務(National Health Service, NHS)的改革,衛生和社會照護法(The Health and Social Care Act 2012)第九部分第二章,規範成立英國衛生與社會照護資訊中心(The Health and Social Care Information Centre, HSCIC)作為政府醫療資訊公開、整合與管理單位,此項規定於今(2013)年4月1日生效。 HSCIC並非正式的政府部會,而屬於執行行政法人(Executive Non Departmental Public Bodies),向衛生部長(Secretary of State for Health)負責,其職責除了蒐集、分析和傳播國家資料暨統計資訊以外,同時亦進行國家各層級的醫療資訊基礎設施的整合,作為醫療資訊數據公開的門戶;此外,HSCIC利用其行政法人的特性,將醫療組織視為客戶,提供不同的服務和產品,以協助其達到所需的資訊管理需求。透過HSCIS對於資訊的整合再公開,有助於在增進政府資訊透明性的同時,亦保障了資訊流動的效率和安全性。 其中HSCIC對於敏感性資料之應用,特別設立資料近用諮詢小組(Data Access Advisory Group, DAAG)予以處理。資料諮詢小組是每月定期由HSCIC所主持的獨立運作團體,須向HSCIC委員會負責。當HSCIC面臨敏感性資料或可識別個人資料之應用(包括是為了研究目的,和為了促進病人的醫療照護所需之應用)時,即交由資料近用諮詢小組會議來討論,以確保揭露該項資訊的風險降到最低。 從HSCIC的組織任務能輕易地發現其具有強大整合醫療資訊之功能,其未來發展勢必與過往飽受爭議的醫療資訊應用息息相關,因此相當值得我們持續觀察HSCIC的後續動態。
美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。