英國通訊管理局Ofcom在2008年12月公布寬頻速度業務法則(Broadband speeds code),用以確保消費者在寬頻速度的選購上可獲得更正確的資訊。這個業務法則係在要求ISP業者必須在銷售點提供明確的寬頻速度說明,於消費者購買時清楚解釋廣告上「保證頻寬」的意義;業者亦需解釋何種技術因素可能會降低速度(例如距離機房多遠影響速率傳輸、高峰流量時導致速率傳輸變慢等等),並提供客戶得以在家中改善情況的方案;若實際速度遠低於原來的說明或保證,則消費者得以選擇替代服務而無須負擔多餘的費用。雖然僅係自願性的業務法則,卻已經有超過全國95%的寬頻用戶所屬的ISP業者進行簽署。
此外,Ofcom同時公布寬頻服務消費者指南(Advice for consumers: Broadband speeds),協助消費者瞭解自己的寬頻服務權利,以及ISP是否遵行寬頻速度業務法則。
在2009年01月08日所公布的2008年英國寬頻速度報告(UK Broadband speeds 2008)指出消費者寬頻上網的平均速率為 3.6 Mbit/s(下行),低於業者在推銷廣告上的4.3Mbit/s。雖然3.6 Mbit/s就足以滿足大多數的網路應用,例如語音以及標準畫質的影音,但是有超過60%的英國消費者所購買的服務卻是「保證」8 M的頻寬;但有1/5 的用戶甚至實際得到的速率不到2 Mbit/s,是廣告上速率的45%。此外,研究顯示有9%的消費者不滿意寬頻服務,其中速度是最常被抱怨的項目;且因為距離的關係,城市居民的速率高於農村地區的15%。速率最高在倫敦,最低在英格蘭東北部、威爾斯以及蘇格蘭,使得農村用戶(14%)不滿意寬頻服務的比率高於城市用戶(8%)。
Ofcom在接下來的六個月內將持續監測這些已經簽署業務法則的ISP業者,以期督促業者能提供更符合消費者需求的服務,並預計納入2009年的政策規劃中。
(2008年英國寬頻速度報告為實地調查,於1500個家庭用戶安裝相關網路設備進行監測網路品質,透過調查期間為2008年10月23日至2008年11月22日止。)
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本修訂醫藥品強化綜合戰略日本內閣於2017年6月閣議決定「經濟財政營運與改革基本方針2017」,設定醫藥品項倍增目標,並計畫檢討在2020年9月前達成學名藥使用率80%以上之推動政策。基於上開方針,為實現「安定供應國民優良品質醫藥品」、「醫療費效率化」、「產業競爭力強化」等目的,厚生勞動省於2017年12月22日修訂「醫藥品產業強化綜合戰略~著眼全球展開之新藥研發」,希望日本醫藥品產業能從依賴「長期收載品」之商業模式,轉向具備更高新藥開發能力之結構。 「醫藥品產業強化綜合戰略」主要修訂內容如下︰(1)改善日本技術、相關知識等研究開發環境︰如推動癌症基因醫療、資料庫整備、利用AI進行醫藥品研究開發等;(2)透過藥事規制改革減低醫療成本和提高效率︰如善用附條件認可制度,以及先驅審查制度之制度化等;(3)醫藥品生產、製造等基礎設施之整備︰如制定相應之新技術品質管理等規範;(4)適當評價之環境、平台整備︰如各種臨床指引之整備;(5)向海外推廣日本製造之醫藥品︰如制定國際法規調適戰略等;(6)促進新藥開發業界之新陳代謝和全球化創新企業︰支援新創企業之人才育成、金融市場之整備等;(7)改善醫療用醫藥品之流通︰如制定流通改善指引等。
美國產業安全局放寬對敘利亞的出口管制措施美國產業安全局(Bureau of Industry and Security)於2025年9月2日發布《放寬對敘利亞的出口管制》(Relaxing Export Controls for Syria)最終細則,此最終細則依《總統行政命令第14312號》(E.O.14312)修訂、放寬《出口管制規則》(Export Administration Regulations,以下簡稱EAR)對敘利亞的出口管制措施。 此次的修訂放寬重點如下: 1. 新增或擴大對敘利亞出口、再出口的許可例外(license exception)範疇 (1) 針對EAR第740部分為新增和擴張,如新增有關於敘利亞和平與繁榮(Peace and Prosperity)的許可例外,擴大EAR第740.9條許可例外之範圍至與消費性通訊裝置(Consumer Communications Devices)相關的貨品及軟體; (2) 為了允許對敘利亞出口、再出口新增的許可例外情況,修訂EAR第746.9條第b項一般限制條款。 2. 對敘利亞出口、再出口採取更寬鬆的許可審查 (1) 於EAR第746.9條第c項第1款特定最終使用情況(如電信通訊、水供應和衛生、電力等)採取推定同意(presumption of approval licensing); (2) 其餘最終使用的出口和再出口許可申請,依EAR第746.9條第c項第2款以逐案審查(case-by-case)的方式為之。 3. 刪除部分條文 例如EAR第746.1條第a項第3款刪除適用《第二號一般命令》(General Order No. 2.)之內容,而交叉參照EAR第746.9條。
國內藥廠發起外銷策略聯盟經濟部工業局將協助國內製藥業成立「藥廠外銷策略聯盟」,集合藥界力量共同打開外銷市場,希望至少推動十幾個學名藥外銷,而明年外銷產值可達 20 億元,每年成長 20 %,五年後外銷產值可到 100 億元;主要鎖定美、日、歐為主的 PIC/S (國際藥品稽查協合會)市場,由熟悉市場的專家來協助製藥界一起拓展海外市場,目前已有近十家業者有意加入此聯盟。 由於過去國內藥廠都主攻健保市場,不過未來成長有限,國內藥廠必須積極拓展海外市場,才可以保持競爭力。今年 4 月,日本實施新藥事法後,採取產銷分離,國內製藥業者有機會爭取到代工的機會,工業局將協助國內業者爭取日本代工注射劑、口服液等機會,以及在台採購原料藥和其他藥劑。以歐盟為主的 PIC/S 市場,近年會員增多,美國 FDA 也有意加入,國內藥廠如能爭取成為會員,可以降低藥廠重複檢驗的成本,有利拓銷海外市場。 國內藥廠拓銷海外市場已漸有成績,如優良藥廠和永光化學合作避孕藥 GyMiso ,與歐洲 HRA 藥廠合作進軍歐盟市場,並順利通過 PIC/S 查核,取得產品製造許可。生達製藥和永信製藥都在美國設廠,努力耕耘美國市場十年後,已開始賺錢,不過仍希望和國內業者合作。南光則已有和日本代工非 PVC 材質注射劑的經驗。