美國病歷健康資訊科技化政策可望於10年內節省220億美元用藥支出

  美國「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, ARRA),將醫療產業中的醫療資訊科技列為重點發展項目之ㄧ。以國內全面採行「電子病歷健康記錄」(electronic health records, EHRs)系統為目標,共挹注190億美元的經費,透過聯邦醫療保險或醫療補助計畫的機制支付獎勵金,鼓勵醫師或醫療院所採購並建置院內的電子醫療資訊系統。自2011年至2015年,醫師或醫療院所符合實質EHR使用者(meaningful EHR user)的標準,至多可獲得44000美元的獎勵金;倘於2015年後,其尚未成為實質EHR使用者,則將以每年多1%的比例,逐年減少其醫療保險補助額,直至2019年將減少5%。為了施行此政策,ARRA規定主管機關須於2009年12月31日前確立EHR的標準,包含了相互運用性(interoperability)、臨床功能性(clinical functionality)及安全性等標準。

  EHR系統的基礎,也就是電子醫囑(e-prescribing)所涵蓋的功能,能提供臨床及藥費的即時資訊,供醫師判斷何種藥物(包含學名藥)最為安全,且可符合病患經濟負擔;亦可顯示該病患用藥紀錄,及其他醫生曾開立的處方,供醫師比對並觀察病患潛在的藥物過敏現象,若系統偵測出藥物間相斥的情形,亦將自動發出安全警示。此外,以電腦輸入處方並自動傳送至領藥處的模式,不僅可省卻病患冗長的等候領藥時間,亦能減少藥劑師因難以判讀字跡所導致的配藥錯誤。 一項由美國藥物照顧管理協會(Pharmaceutical Care Management Association, PCMA)所贊助的調查研究指出,ARRA中的病歷健康資訊科技化措施,將使e-prescribing的運用率,在未來五年內增加75%;而在往後10年,此將減少約3500萬筆的用藥指示錯誤,消弭因服藥錯誤導致的死亡事件,並能節省220億的用藥支出;其所帶來的效益實遠超過政府所挹注的經費。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國病歷健康資訊科技化政策可望於10年內節省220億美元用藥支出, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3038&no=55&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
日本發布策略性資料使用之資料管理指南,旨在協助企業將資料視為資產與產品,以策略性的運用資料

日本獨立行政法人情報處理推進機構於2025年6月11日發布《日本發布策略性資料使用之資料管理指南(下稱《指南》)》,旨在協助企業將資料視為資產與產品,以策略性的運用資料。 《指南》指出,資料管理是指企業針對其所擁有的所有資料,進行有效率的收集、整理、保存、共享、分析與運用的一套系統化流程,其目的是為了透過確保資料品質及正確性,協助業務決策,並確保企業的競爭優勢。 在現代企業經營中,資料具有雙重屬性,亦即資料除了是企業重要的經營資產,同時也是企業的產品之一。作為資產的資料如同設備等一般資產,是可供銷售或提供服務的資產,故為最大化其價值並促進成長,需要進行適當管理與投資。此外,由於資料具有可複製性,因此一經外洩,將會造成廣泛且持續性的影響,因此需進行資料管理以確保資料安全性;作為產品的資料則需要有效的整備及管理,以確保維持其正確性所需的品質。 根據《指南》,資料管理的核心在於其需要貫穿資料生命週期,且隨著數位化的進展,對於資料管理亦產生新的需求,例如針對資料多元運用需求之應對、資料須具備可追溯性、針對機密資料之管理方式、確保資料安全性及資料品質等。 為因應新興資料管理需求,《指南》建議可透過評估自身定位、規劃必要體制、思考資料策略及管理架構、盤點企業既有資料及必要資料、培養及建立企業從決策層到執行層的人員均重視資料的資料文化,以及減少不必要或易出錯的作業流程等六項具體措施,建立企業自身貫穿資料生命週期之資料管理流程。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料管理流程,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為資料管理流程設計與實務落實之參考,以強化自身資料管理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國證券交易委員會針對上市公司提出網路安全風險管理、治理及網路安全風險事件揭露規則

  美國證券交易委員會(United States Securities and Exchange Commission, SEC)於2022年3月9日提出關於上市公司網路安全風險管理、治理及相關事件揭露規則,希望加強上市公司的網路安全風險管理以及網路安全事件之揭露監管,其提案核心內容有二,第一係要求國內上市公司於確定發生重大網路安全事件後四個工作日內,揭露有關資訊,且揭露內容必須包含以下五大項,(1)事件何時發現、目前是否持續中、(2)事件性質與其範圍簡要說明、(3)是否有任何資料被洩漏、竄改或被不當使用、(4)該事件對於公司之營運影響、(5)公司是否已著手進行補救及處理。   該提案的第二個核心內容係定期報告公司的網路安全風險管理及治理資訊,例如公司是否具有網路安全風險評估計畫,其內容為何、公司是否有政策及程序監督第三方服務提供商之網路安全風險、當公司發生網路安全事件時,是否具備應變程序及網路攻擊復原計畫、網路安全相關風險對於營運結果及財務狀況將可能產生何種影響等等。   該提案的公眾諮詢期間為提案發布後60天,鑒於網路安全風險增加,美國證券交易委員會期望藉由此提案,更明確的告知投資者上市公司的網路安全風險管理及治理相關資訊、並且可以即時通知投資者重大網路安全事件,給予上市公司投資者及其他資本市場參與者更周延之保障。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

美國啟動「綠色按鈕」機制,落實21世紀智慧電網政策綱領

  「綠色按鈕」(Green Button)已於今年(2012)1月正式啟動,運用新的智慧電網科技,容許約六百萬加州用電戶在網站上按下一個按鈕後,便可及時獲取他們的詳細能源使用資訊,同時,其他加州地區公用事業業者也承諾在同年內讓另外十二萬用電戶也可得到同樣的服務,歐巴馬政府同時也於今年3月22日宣布,全美其他地區九個主要公用事業業者也承諾加入「綠色按鈕」的行動中,提供這個新興服務給超過一千五百萬用電戶,許多其他相關業者也宣布加入行動,積極投入發展與「綠色按鈕」相容的應用軟體與服務,提供更多節約能源的方法。   「綠色按鈕」這個行動是由智慧電網互通性專家諮詢小組(SGIP)所主導,這個由美國國家標準與技術研究院(NIST)創立於2009年的工作小組,成員超過750個不同種類的相關業者及政府機關,目的在於致力協調智慧型電網發展的標準與互通性。而為了響應政府的號召—希望業者能提供消費者易懂的能源使用資訊,藉由淺顯易懂的方法讓消費者可以便利地獲取自己對於能源的使用數據,進而設法使消費者減少在能源上的花費,乃係美國政府於去年6月(2011)提出的21世紀智慧電網政策綱領中重要的政策之一。   美國環保署也已經加入了「綠色按鈕」的行列,將利用「綠色按鈕」的數據來幫助商業建築所有人評估他們的耗能與其推動的「能源之星」(Energy Star)認證計畫相結合,給予「能源之星」績效分數(performance scores)。

TOP