跨國農業生技公司Monsanto研發的MON810品系抗蟲基因改造玉米,於今(2009)年4月中旬遭到德國農業生技的主管機關-聯邦營養、農業與消費者保護局(Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, BMELV)援引歐盟基因改造生物環境釋出指令(EU-Freisetzungsrichtlinie)中的防衛條款,加以禁種。
雖然Monsanto隨即對BMELV此項決定提出行政訴訟,但Braunschweig行政法院在5月初作出的暫時性裁定,支持了BMELV此項決定。法院基於兩大理由,裁定BMELV之禁種決定並非無據:(1)只要有新的或進一步的資訊出現,支持基因改造作物可能會對人體或動物健康造成損害,即可支持主管機關作出禁止種植已經取得歐盟上市許可的基因改造作物之決定之論據,不需要存在有必然會有風險的科學知識。(2)據此論據進行風險調查及風險評估,乃主管機關之執掌,主管機關對此有裁量權(Beurteilungsspielraum),從而,法院介入審查該行政決定的重點,在於主管機關是否已為充分的風險調查、有無恣意論斷風險。本案目前尚非終局之決定,Monsanto仍可對於此項裁定提出抗告。
在歐盟,基因改造生物的上市需透過歐盟程序為之,一旦歐盟執委會允許某一基因改造生物的上市,該基因改造生物原則上即可在全體歐盟會員國推廣銷售,包括種植。唯歐盟環境釋出指令例外容許會員國得於一定條件下,援引防衛條款主張已通過歐盟審查的基因改造生物,對於其境內環境或人體與動植物健康有負面影響,從而禁止特定已取得歐盟上市許可的基因改造生物於其境內流通。防衛條款的動用屬例外情形,且須定期接受歐盟層級的審查。
本文為「經濟部產業技術司科技專案成果」
英國上議院科學及科技委員會(The House of Lords, Science and Technology Committee)於2016年9月15日對於自動駕駛車(Autonomous Vehicles)的運作環境與應備法制規範展開公眾諮詢,委員會邀請利害相關的個人和團體提交書面文件來回應此公眾諮詢。書面意見提交的最後期限是2016年10月26日。 英國政府一向對發展自動駕駛車的潛力十分積極,其在2015年建立了一個新的聯合政策單位-聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV),並在2015年財政預算案中提供CCAV一億英鎊的智慧行動研發基金聚焦於無人駕駛車技術。CCAV還公佈現有與車輛交通相關立法的調查報告,其結論是:「英國現有的法律架構和管制框架並不構成自動駕駛車在公路上測試的阻礙。」此外,CCAV還出版了無人駕駛汽車測試的實務守則。在2016年英國女王的演講中,政府宣布將制訂現代運輸法案(Modern Transport Bill):「確保英國處在最新運輸科技的尖端,包括自動駕駛和電動車。」 2016年7月,CCAV舉辦了英國的聯網與自動駕駛車的測試生態系統的公眾諮詢,以及於2016年9月發佈個人和企業對於在英國使用自動駕駛車技術和先進輔助駕駛系統的公眾意見徵詢。 本次公眾諮詢將調查政府所採取的行動是否合適,是否有兼顧到經濟機會和潛在公共利益。在影響與效益方面,本次諮詢將收集自動駕駛車的市場規模與潛在用途、對用戶的益處與壞處、自動駕駛車對不同產業的潛在衝擊以及公眾對於自動駕駛車的態度等相關證據。在研究與開發的方面,自動駕駛車目前的示範計畫與規模是否足夠、政府是否有挹注足夠的研發資金、政府研發成果的績效以及目前研發環境是否對中小企業有利等面向,找尋傳統道路車輛是否有和自動駕駛車輛並存的過渡轉型方法。最後,布署自動駕駛車是否需要提升軟硬體基礎設施、政府是否有建立資料與網路安全的方法、是否需要進一步的修訂自動駕駛車相關法規、演算法及人工智慧是否有任何道德問題、教育體系是否能提供自動駕駛車相關技能、政府制訂策略的廣度;以及退出歐盟是否對英國研發自動駕駛車產業有不利之影響;而英國政府是否應在短期內做出保護該產業之相關措施,或是待Brexit條款協商完成之後再視情況決定等等。 上述議題在書面意見徵集完成之後,將於2016年11月召開公聽會再度徵集更廣泛的相關意見,科學及科技委員會希望能在2017年初做成調查報告並提交給國會,在得到政府回應之後,可能將進行辯論以決定未來英國自動駕駛車產業的發展方向。
美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。
日本簽署SBOM國際共通指引,強化軟體弱點管理,全面提升國家網路安全由美國網路安全暨基礎設施安全局(Cybersecurity and Infrastructure Security Agency, 簡稱CISA)自2024年以來,持續主導並規劃《SBOM網路安全之共同願景》(A Shared Vision of Software Bill of Materials(SBOM) for Cybersecurity)之指引訂定,作為保障網路安全之國際共通指引。於2025年9月3日,由日本內閣官房網路安全統括室為首,偕同經濟產業省共同代表日本簽署了該份指引,包含日本在內,尚有美國、德國、法國、義大利、荷蘭、加拿大、澳洲、紐西蘭、印度、新加坡、韓國、波蘭、捷克、斯洛伐克等共計15個國家的網路安全部門,皆同步完成簽署。以下為指引之重點內容: 1. 軟體物料清單的定位(Software Bill of Materials, 簡稱SBOM) SBOM於軟體建構上,包含元件內容資訊與供應鏈關係等相關資訊的正式紀錄。 2. 導入SBOM的優點 (1) 提升管理軟體弱點之效率。 (2) 協助供應鏈風險管理(提供選用安全的軟體,提升供應商與使用者之間溝通效率)。 (3) 協助改善軟體開發之進程。 (4) 提升管理授權軟體之效率。 3. SBOM對於利害關係人之影響 (1) 使軟體開發人員可選擇最符合需求的軟體元件,並針對弱點做出適當處置。 (2) 軟體資訊的透明化,可供採購人員依風險評估決定是否採購。 (3) 若發現軟體有新的弱點,使軟體營運商更易於特定軟體與掌握弱點、漏洞。 (4) 使政府部門於採購流程中,發現與因應影響國家安全的潛在風險。 4. SBOM適用原則與相關告知義務 確保軟體開發商、製造商供應鏈的資訊透明,適用符合安全性設計(Security by Design)之資安要求,以及須承擔SBOM相關告知義務。 近年來軟體物料清單(SBOM),已逐漸成為軟體開發人員與使用者,於管理軟體弱點上的最佳解決方案。然而,針對SBOM的作法與要求程度,各先進國家大不相同,因此透過國際共通指引的簽署,各國對於SBOM的要求與效益終於有了新的共識。指引內容不僅建議軟體開發商、製造商宜於設計階段採用安全設計,以確保所有類型的資通訊產品(特別是軟體)之使用安全,也鼓勵製造商為每項軟體產品建立SBOM並進行管理,包含軟體版本控制與資料更新,指引更強調SBOM必須整合組織現有的開發與管理工具(例如漏洞管理工具、資產管理工具等)以發揮價值。此份指引可作為我國未來之參考借鏡,訂定相關的軟體物料清單之適用標準,提升政府部門以及產業供應鏈之網路安全。
簡介人工智慧的智慧財產權保護趨勢近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)