香港電訊管理局放寬對互連費的管制

  香港電訊管理局(OFTA)於2009年04月27日廢止了廿五年前制定的「流動網絡(即我國的行動電話/信網路)付費」規管指引。此管制規定即是明定了行動網路業者(MNO)固網業者(FNO)間的互連費收取(FMIC)模式。今後互連費的結算將以商業協議取代事前的管制性介入。

 

  以往固網與行動網路業者互連費計算乃基於「流動網絡付費」為之,亦即行動網路業者須繳付流動網絡與固網之間所有的通話互連費用(MPNP),顯有不對稱之狀況,不利於電訊服務在匯流大環境下的公平競爭和發展。職是,電訊管理局於2007年決議將廢除該規定並設定兩年的過渡期間,讓相關業者進行調整;多數業者也在過渡期間內達成協議或共識。業者間均同意原則上採取「毋須拆帳」(Bill and Keep, BAK)的結算模式,因此也不會產生將費用轉嫁到其他電訊服務商或是終端消費者的問題。此顯示去管制化並交由市場機制決定互連費用之作法實屬可行。

 

  以市場取代管制,短期內雖會有不確定因素可能導致爭議,惟電訊管理局也強調業者間的協議(含協商不成)不得危及公眾利益與一定的服務品質,必要時將依法介入業者間的協商程序。該局也將持續關注互連費問題之發展。

相關連結
相關附件
※ 香港電訊管理局放寬對互連費的管制, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3055&no=64&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
美國士兵曼寧因向「維基解密」網站洩漏國家外交及軍事情報而遭起訴22項罪名

  美國的情報分析員一等兵布蘭德利.曼寧(Brandly Manning),被控訴22項包括通敵罪、非法取得並散布外交及軍事機密的文件給「維基揭密」網站等妨害國家安全罪名,現被拘禁在馬里蘭州的米德堡。     曼寧一審由軍事法院審理,但軍事上訴審法院認為管轄權有爭議,為決定是否繼續適用軍事法院的審理程序,今年10月10日舉行預審聽證會,由五人一組的普通法院法官受理。同時,維基解密、憲法人權中心、美聯社等新聞媒體,均要求軍事法庭依憲法第一修正案,提供曼寧案的相關卷宗資料,但政府發言人查得費雪上尉(Captain Chad Fisher)表示,第一憲法修正案沒有絕對的效力,也未賦予法院公開卷宗的義務。若記者和大眾想獲得案件的文件資料,可透過「情報自由法」申請。但依「情報自由法」的申請程序非常冗長,而且美聯社和曼寧的辯護律師大衛.庫姆斯(david Commbs)的申請都已遭拒絕,律師大衛只能在私人網誌上向關心曼寧案的民眾公布案件進度和內情。     憲法人權中心的律師Shayana Kadidal 表示,不公開卷宗資料,就算參與了聽證會也無法理解案件的真實面貌,而無法做出準確的報導。但軍事法院對於憲法人權中心、新聞媒體及公眾要求公開法庭卷宗的訴求依然無動於衷。軍方和憲法人權中心將在之後會提交聲請,解釋為何他們認為軍事上訴審法院有權裁決卷宗是否公開。     曼寧下次庭期是明年2月4日,若通敵罪成立,曼寧將會被判終身監禁。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

新版個資法與個資保護管理制度

新版個資法與個資保護管理制度 科技法律研究所 2013年4月1日 壹、事件摘要   國內於1995年制定施行「電腦處理個人資料保護法」,在資訊科技日新月異下,加諸法規本身適用上的限制,原有法制設計已不符實務需求。考量個資外洩事件日漸增加,歷經長時間討論,國內於2010年4月三讀通過新版個資法,將法律名稱調整為「個人資料保護法」,並在2012年10月1日正式實施新制。新法不僅全面調整法規內容,並大幅加重企業所負義務與責任,就民事責任而言,單一事件 賠償金額最高達到10億。對國內產業而言,如何有效因應個資法要求,採取妥適的對應策略降低風險,已成為企業運營上的關鍵課題。 貳、重點說明 一、新版個資法暨施行細則正式施行   個人資料保護可說是近期國內最受重視的議題,事實上國內早於1995年8月即制定施行「電腦處理個人資料保護法」,惟經過十餘年的發展,在電腦與資訊科技日新月異下,包括電子商務等新興商務模式,均廣泛蒐集個人資料,個人隱私的妥善保護,日益重要。然而,原有的「電腦處理個人資料保護法」,於適用主體方面,存在著行業別的限制,僅有「徵信業、醫院、學校、電信業、金融業、證券業、保險業及大眾傳播業」等八種特定事業,以及經由法務部會同中央目的事業主管機關共同指定的行業,方受到規範;此外,該法所保護的客體,亦限於經由「電腦或自動化設備」處理的個人資料,才受到保護,不包括非經電腦處理的個人資料,對於保護個人資料隱私權益規範,明顯不足。   個資外洩事件層出不窮下,2007年行政院消費者保護委員會提出的十大消費新聞中,「電子商務、電視購物個資外洩事件」即高居首位,促使法務部與經濟部透過「共同指定」方式,使無店面零售業(包括網路購物、型錄購物、電視購物等三種交易態樣)自2010年7月1日起適用「電腦處理個人資料保護法」。   為使個人資料保護法制規範內容,得以因應急速變遷的社會環境,行政院甚早即已提出「電腦處理個人資料保護法修正草案」,並將名稱修正為「個人資料保護法」,歷經立法院會多次討論,終於在2010年4月三讀通過,法律名稱調整為「個人資料保護法」,於5月26日由總統府正式公布。新法雖於2010年4月三讀通過,但為使企業及民眾有充分時間了解並因應新法,新版個資法並未於公布日施行,而是於該法第56條規定,由行政院另訂施行日期。經過長時間討論,「個人資料保護法」已由行政院決定在2012年10月1日正式實施,惟新法第6條關於特種資料原則上不得蒐集、處理與利用,以及第54條要求新法實施前已間接取得的個人資料,必須在一年內補行告知等二項規定,保留暫緩實施。   就個人資料保護法制而言,除最為重要的「個人資料保護法」外,依據母法制定的施行細則,也扮演著關鍵性的角色。原有的「電腦處理個人資料保護法施行細則」於1996年5月1日發布施行,鑒於「電腦處理個人資料保護法」已於2010年進行修正,並將名稱修正為「個人資料保護法」,法務部也配合新法修正內容,積極研商「電腦處理個人資料保護法施行細則修正草案」。隨著新版個人資料保護法確定於2012年10月1日正式上路,法務部另於2012年9月26日正式公告?正後的施行細則,並將細則名稱修正為「個人資料保護法施行細則」。新版個資法暨施行細則正式上路,促使國內個人資料保護工作,邁入全新的紀元。 二、個人資料管理制度與資料隱私保護標章   在「個人資料保護法」修正通過前,2008年6月立法院即已提案,建議政府參考國外作法,推動我國隱私權管理保護認證制度,隔年8月「行政院產業科技策略會議」(Strategic Review Board)中,決議推動「電子商務個人資料管理暨資訊安全行動方案」,並於同年12月核定放入99年至102年政府關鍵推動方案。   基於上述行動方案,經濟部自2010年10月起,委由財團法人資訊工業策進會執行「電子商務個人資料管理制度建置計畫」,並自2012年起續行推動「電子商務個人資料管理制度推動計畫」,建置推動「臺灣個人資料保護與管理制度」(Taiwan Personal Information Protection and Administration System, TPIPAS),期使企業於遵守個人資料保護法制的前提下,透過建立內部管理機制,適當保障消費者的個人資料,並在嚴謹的驗證要求下,確認導入企業是否符合制度要求,同時搭配「資料隱私保護標章」(Data Privacy Protection Mark, dp.mark)的發放,作為消費者判斷企業隱私維護能力的客觀指標。   針對個人資料管理制度的導入,事業應依循「臺灣個人資料保護與管理制度規範」逐步建立內容管理機制,該制度規範同時也是國內企業能否取得「資料隱私保護標章」(dp.mark)的審查指標。由於國內業者過往並無建立內部個資管理制度的經驗,「臺灣個人資料保護與管理制度」自2011年起,協助企業培訓「個人資料管理師」及「個人資料內評師」等制度專業人員,合格的個人資料管理師可協助企業於事業內部建立完整的制度,而內評師則是扮演確認企業建立的制度,是否符合制度規範要求的角色。截至2012年,國內已有近百家企業參與制度人員培訓,合計達426位管理師及131位內評師。在TPIPAS導入上,事業除了由合格的管理師自行建置導入管理制度外,也可尋求專業的外部輔導機構協助,「臺灣個人資料保護與管理制度」自2012年起,開放輔導機構登錄之申請,並於制度網站上公告符合資格要求的制度輔導機構,目前已有九家合格的輔導機構完成登錄作業,提供事業個資輔導服務。   事業完成內部管理體系建置後,便可向「臺灣個人資料保護與管理制度」提出驗證申請,驗證流程包括「書面審查」及「現場審查」二階段,事業通過驗證後,即具備使用「資料隱私保護標章」(dp.mark)的資格。目前國內已有統一超商、全家、博客來、樂天、亞東、康迅數位及欣亞等七家業者通過TPIPAS驗證並取得dp.mark,透過導入個資管理制度,強化消費者隱私資料的維護。 參、事件評析   「臺灣個人資料保護與管理制度」(TPIPAS)是以國內新版個人資料保護法內容為基礎,並參考國際組織對個人資料保護的最新要求,以及主要國家個資管理制度的推動經驗,所建立的專業個人資料管理制度。TPIPAS配合產業個人資料保護實務需求,將專業的法律要件轉化為內部個資管理流程,可有效協助產業建立完善妥適的個人資料管理制度,符合個資法規要求。在新版個人資料保護法上路之際,導入TPIPAS取得dp.mark,不啻是企業降低個資法風險,提升內部個人資料管理能力的最佳策略。

美國國家標準及技術研究院公布晶片法補助申請細節及限制

美國商務部(Department of Commerce, DOC)旗下國家標準及技術研究院(National Institute of Standards and Technology, NIST)於2023年2月28日發布《晶片與科學法》(CHIPS and Science Act)補助具體內容,重點如下: 一、申請時間:補助採滾動式錄取模式(rolling basis),先進製程製造補助將於2023年3月31日起開放預先申請(pre-application)與正式申請(full application);成熟製程與其他相關生產設施的製造補助,將分別於2023年5月1日及6月26日開放預先申請及正式申請。 二、補助方式與金額:補助分為直接補助(direct funding)、聯邦政府貸款(federal loans)或第三人提供貸款並由聯邦政府提供擔保(federal guarantees of third-party loans)。直接補助的金額上限預計為預估資本支出的15%。每個計畫可透過一種以上之方式獲得補助,然整體補助金額不得超出預估資本支出的35%。 三、申請流程 1.意向聲明(statement of interest):申請人須提供半導體製造工廠投資計畫的簡要說明,俾利NIST旗下晶片計畫辦公室(CHIPS Program Office)為未來審查進行準備。 2.預先申請:申請人提供更詳盡的計畫內容。晶片計畫辦公室將給予調整意見。 3.正式申請:依照晶片計畫辦公室給予的意見修改後,申請人應遞交完整的計畫申請書,內容必須包含投資計畫的技術與經濟可行性之分析。晶片辦公室審核完畢後,會與申請人簽訂不具約束力的初步備忘錄(non-binding Preliminary Memorandum of Terms),記載補助方式與金額。 4.盡職調查(due diligence):在經過上述程序後,晶片計畫辦公室如認為申請人合理且可能(reasonably likely)取得補助,將對申請人進行盡職調查。 5.補助發放:通過盡職調查後,DOC將開始準備發放補助。 四、補助規範與限制 1.禁止買回庫藏股(stock buybacks):受補助者不得將補助款用於買回庫藏股。 2.人力資源計畫:申請人要求的補助金額若超過1億5千萬美元,須額外說明將如何提供員工可負擔且高品質的子女托育服務。 3.建造期限:受補助者必須於DOC所決定的特定日期(target dates)前開始或完成廠房建造,否則DOC會視情況決定是否收回補助。 4.分潤:補助金額超過1億5千萬美元時,受補助者須與美國政府分享超過申請計畫中所預估之收益,但最高不超過直接補助金額的75%。 5.不得於特定國家擴產與進行研究:受補助者於10年內或與DOC合意的期間內,除特定情況下(15 U.S.C. § 4652(a)(6)(C)),不得於特定國家,如中國,進行大規模半導體製造的擴產(material expansion)、聯合研究(joint research)或技術授權(technology licensing),違反者將會被DOC收回全額補助。

TOP