聯合國環境規劃署(UNEP)正式發表「全球綠色新政」(Global Green New Deal)報告,建議各國投入GDP1%(約7,500億美元)資助綠色環境建設及發展,除期使更落實綠色經濟倡議(Green Economy Initiative)內容外,並希望以此帶動綠領就業(Green Collar Job)及促進綠色研發活動蓬勃。
聯合國UNEP於2009年2月對外發表全球綠色新政報告,並倡導五大重要投資領域,包括以下:
(1) 提昇各新舊建築物能源使用效率領域之投資。
(2) 再生能源(包括太陽能、風力、地熱能、生質能等)領域之投資。
(3) 永續交通運輸環境(包括氫能汽車、高速鐵路、快速捷運系統等)領域之投資。
(4) 全球性生態構成(包括潔淨水、森林、土壤等)基礎環境領域之投資。
(5) 永續農業(包括有機農產品)領域之投資。
聯合國UNEP並於研究報告中強調:綠色經濟轉向之根本驅動力在於導入相關綠色科技之解決方案,包括各種清潔生產製程、污染防治技術,以及管末和監控技術,涵蓋know-how、流程、商品、服務、設備、組織和管理等,均為綠色經濟蓬勃發展之關鍵環節。
而世界各國關於推動綠色新政投資之規劃行動,如歐盟於2008年11月29日通過經濟振興方案,總預算為2000億歐元(1.5%EU的GDP),方案內容涵蓋4大優先領域,亦即為民眾(people)、商業(business)、基礎建設及能源(infrastructure and energy)、研究與創新(research and innovation),歐盟也呼籲各國應多投入綠色科技研發活動。
而美國2009年2月通過之復甦與再投資法案(American Recovery and Reinvestment Act),亦將綠色新政涵蓋其中,其中編列61.3 billion美元投入「清潔、效率能源方案」,主要係投資於提升能源效率、發展潔淨能源及交通效率及科技研發等。
以外,日本政府於2009年2月亦指示著手研擬「綠色新政」規劃,,預計於6月後向首相提出建議書,以因應氣候變遷及經濟危機威脅等危機。而南韓則是於2009年1月宣布未來4年將投入50兆韓元推動「綠色新政」,並以此投資行動,刺激創造更多的綠色就業機會。
本文為「經濟部產業技術司科技專案成果」
英國金融行為監督總署(Financial Conduct Authority, FCA)與英國財政部、英格蘭銀行於2018年3月共同組成「加密資產專案小組」(Cryptoasset Taskforce),為英國政府「金融科技產業戰略」(Fintech Sector Strategy)之一環。2019年1月23日,FCA公布《加密資產指引》(Guidance on Cryptoassets)諮詢文件,除在配合加密資產專案小組之調查、研究外,亦在於落實FCA作為金融監理主管機關,盤點及釐清法規適用之職責,以妥適因應金融科技發展。公眾意見徵集期間至2019年5月4日,FCA並預計在同年夏季提出最終版本的報告。 依據《加密資產指引》,FCA臚列了四項監理代幣(token)可能的法源依據,包含: (1)受監管活動指令(Regulated Activities Order)下的「特定投資項目」。 (2)歐盟金融工具市場指令II(MiFID II)下的「金融工具」。 (3)電子貨幣條例(E-Money Regulations)下之「電子貨幣」。 (4)支付服務條例(Payment Services Regulations)。 由於加密資產市場與分散式記帳技術發展迅速,參與者迫切需求更清晰之監理規範,包含交易匯兌、主管機關等,避免因誤觸受管制之活動(regulated activities)而遭受裁罰。其次,FCA亦希望能強化消費者保護,依照加密資產商品類型,讓消費者知道可以尋求何種法律上之保障。
馬來西亞通過修正《個人資料保護法》馬來西亞個人資料保護委員會(Personal Data Protection commissioner,下稱個資保護委員會)於2023年度收受與個人資料(下稱個資)濫用、外洩相關申訴案件數量達779件,成長數量令人憂心。為確保對於個資保護規範能與國際標準發展同步,並加強個資遭洩漏時即時採取應變措施等相關政策,以解決前述憂心狀況,數位部(Ministry of Digital)於2024年7月10日提出《個人資料保護法》(Personal Data Protection Act 2010, PDPA)修正案,並於同年7月16日經下議院(Dewan Rakyat,馬來語直譯)表決通過。 本次PDPA修正重點包含: 1.設立個資保護官(data protection officer, DPO)制度:強制要求蒐集、處理、利用個資之資料控管者(data controller),及受資料控管者委託而實質處理個資之資料處理者(data processor),均需指派個資保護官。 2.擴張對於敏感性個資(sensitive personal data)定義:與個人身體、生理或行為特徵相關之技術處理所生個資(即生物辨識資料),皆屬之。 3.制訂個資外洩通報制度:強制要求發生個資外洩時須通報個資保護委員會,以及可能受到任何重大損害之個資當事人,惟對於「重大損害」尚未有明確定義。 4.導入資料可攜性:在遵守技術可行性(technical feasibility)與資料格式相容性(data format compatibility)之情境下,允許資料控管者之間在當事人要求下進行資料傳輸。 5.資料處理者的合規遵循義務:舊法僅要求資料控管者須遵守PDPA所規定的安全原則(security principle);新法則擴及要求資料處理者亦有安全原則之合規遵循義務。 6.提高罰則:舊法對於違反個資保護原則者,最高僅得處300,000馬幣和/或2年監禁;新法提高罰則最高得處1,000,000馬幣和/或最高3年監禁。 7.跨境傳輸規範修正:原則允許資料控管者將個資傳輸至馬來西亞以外,惟應採取適當措施確認及確保資料接收方保護個資之水準與馬來西亞個資法程度相當;並將跨境白名單制度調整為黑名單制度,不得傳輸至政府公布黑名單所列地區。 馬來西亞數位部本次修正PDPA,彰顯該國政府對個資保護之重視,惟關於任命個資保護官資格要求、個資外洩通報重大程度標準等細部規範,則仍須待修正案通過後,經個資保護委員會發布相關指引再行釐清。
歐盟法院被遺忘權2017年最新判決:Camera di Commercio di Lecce v. Manni案歐盟法院在2017年3月9日針對其於同日所公布的判決發布新聞稿,指出該院認定公司資料登記中的個人資料於此案中並無被遺忘權之適用。 該案件起源於2007年義大利的Manni先生對雷契商業登記處(Lecce Chamber of Commerce)所提之爭訟。在由雷契法院(Tribunal di Lecce)受理的案件中,Manni先生主張其所承接觀光性建案乃因商業登記處之資料清楚顯示其於1992年間擔任負責人的公司倒閉之影響而無法成交。 在一審判決中,雷契地方法院命雷契商業登記處將Manni先生與其之前所任職公司後來進入清算程序之聯結匿名化,並應對其為損害賠償。嗣後,雷契商業登記處向義大利最高法院(Corte suprema di cassazione)提起上訴,該院則決定聲請歐盟法院的先訴裁定(preliminary uuling)程序。 歐盟法院的判決指出:公司登記資料的公開性質,乃基於確保公司間以及與第三人間之法律安定性,特別是對於有意願入股上市公司或股份有限公司的第三人之利益。考量本案所涉法律權利之範圍,以及這些權利限制資料存取的時間在會員國各有所異,歐盟法院認為本案所涉之事實並不足以正當化系爭資料近用之限制,但其亦不排除未來有不同的可能,但須個案判斷。
演算法歧視將適用於《紐澤西州反歧視法》2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。