蘋果電腦(Apple)於2009年4月23日被美國德州東區地方法院判定侵害OPTi 公司之專利並且必須賠償美金$1900萬元。此項專利涉及記憶體之”predictive snooping” 技術。陪審團並認為蘋果電腦之行為構成故意侵權。蘋果電腦雖主張OPTi 公司之專利為無效,但此抗辯不為法院所採納。
OPTi 公司自2003年開始即放棄其原有的製造與販賣產品的生意,改經藉由提起侵權訴訟來獲取利益。除了控告蘋果電腦外,OPTi 公司也針對其”predictive snooping” 專利技術於同一法院對AMD 公司提出類似的專利侵權訴訟。由蘋果電腦此次被判敗訴來看,OPTi 公司似乎已準備好擴大藉由它所擁有的predictive snooping” 技術專利以提起訴訟的方式來獲取授權收益。如同以往,蘋果電腦未對此次被判侵權賠償做出任何評論。
日本納稅作業效率和全世界其他先進國家相比仍然偏低,根據世界銀行之調查,日本企業每年花費納稅作業的時間約330小時,是OECD會員國平均時間的1.9倍。為有效提高企業處理稅捐事務作業之效率,日本財務省研擬要求企業申報法人稅和消費稅時必須以電子方式進行,目標是在今年6月前提出具體草案,納入2018年度的稅制改正大綱。 日本自2004年起開辦法人及自然人透過網路申報納稅,各地稅務署可透過國稅綜合管理(SKS)系統讀取申報書類並取得其內容,且由於相關申報書類依法應保存9年,利用電子申報方式可有效節省空間成本程序負擔。 以2015年為例,法人稅全年總申報件數約196萬件,其中已有75%是經由網路申報。但另一方面,資本額1億元以上的日本企業經由網路申報者則僅有52%,理由除了大企業多有自成一格的總務會計系統,以及普遍仍存在以收據等文件進行報帳的習慣外,佔稅收全體約4成的地方稅目前仍有許多地方政府尚未提供電子申報之服務也是重要原因,就此總務省亦將持續進行基礎設施之整建以克服此問題。 我國自1998年擘劃電子化政府起至今已邁入第五階段,為能達成「便捷生活」、「數位經濟」及「透明治理」三大目標以及「打造領先全球的數位政府」之願景,應可參考前述日本政府之各項作法。
歐盟電信網路新修規章通過網路中立條款2015年10月27日歐洲議會通過電信網路新修規章(Regulation 2015/2120),內容包括網路中立(Net Neutrality)條款,該規章將拘束歐盟全體會員國之資訊通信法規,並確立歐盟境內之網路中立原則。在本次立法之前,歐盟境內未建立統一的網路中立法規,僅荷蘭、斯洛維尼亞及芬蘭制定國內網路中立法規。 網路中立係指各種網路應用、內容或服務,均應受到平等對待,網路服務業者 (Internet Service Provider,以下簡稱ISP)不得任意實施差別待遇,例如攔阻(blocking)、延後傳送順序或降速(throttling)等。依據歐盟新修規章第3(3)條規定,ISP應平等處理所有網路流量,但同條之例外條款允許ISP在特定條件下,採取合理的流量管制措施。ISP流量管制之標的必須係基於因技術上服務需求之差異,所客觀形成之不同類別,換句話說,ISP不得因商業考量而對個別網路使用者產生差別待遇,僅得針對客觀的類別進行流量差異管制,例如點對點(Peer-to-Peer,P2P)傳輸軟體下載與語音電話,因流量傳輸需求不同,屬於不同的類別,是故,對於這兩種類別可採取不同之傳輸速度。同時,ISP的管制措施必須符合透明、非歧視性及比例原則。ISP亦不得監看特定內容,而管制期間不得超過必要之期限。 除了上述因客觀類別所採取之差別待遇之外,該規章亦賦予ISP得因特定法定事項而採取流量管制,該法定事項包括: 1.基於法律規範或執法需要而進行管制:包括符合歐盟法或會員國國內法之規定、以及法院或行政機關之命令或授權。 2.為了維持網路服務之完整性及安全性所採取之管制,包括網路、透過網路提供之服務或終端使用者(個人及企業)之終端設備。 3.防止即將產生之網路塞車或減輕網路塞車情況,但其前提為相同之網路服務類別必須給予平等之待遇。 歐盟之新修規章試圖在網路中立原則下,建立合理的管制措施規範。但該規章仍存有一些爭議性,包括: 1.為了讓醫療用途等網路流量能被優先處理,該規章允許ISP針對類別差異給予不同傳輸速度。但類別之區分方式仍不夠明確,可能導致ISP得恣意實施差別待遇。 2.法條未限制網路公司與電信業者結盟,ISP可依據商業契約讓某些網路使用不計入資費的使用量(zero rating),可能導致大公司占據競爭優勢,不利新興公司的發展。 3.有關加密資料之類別決定,ISP須進行解密查看才知道該加密資料符合何種傳輸類別,但此舉會引發資料保護之問題,因此加密資料之傳輸問題仍尚待解決。 4.為了促使網路暢通,該規章允許網路塞車時或有塞車之虞時,ISP可進行流量管制。但後續必須清楚界定網路塞車之虞的情況,以避免賦予ISP過多管制權限。 歐盟新修規章已完成立法,後續將交由歐盟電信管制機關(Body of European Regulators for Electronic Communications,BEREC)訂立細部辦法,以拘束歐盟各會員國的網路服務業者,同時各會員國也必須修改國內相關法規,以符合該規章之規範。
菲律賓推動基改稻米 窒礙難行根據國際間重要農糧組織ISAAA(International Service for the Acquisition of Agri-Biotech Applications)所公布的2004年統計報告,全球基改作物栽種面積已達八千一百萬公頃,在2003年僅有六千七百萬公頃,成長幅度高達20%,尤其是在開發中國家。菲律賓是亞洲第一個支持商業化生產基因改造食物的國家,從2000年起即開始商業交易基因改造作物。由於其所研發之轉殖”IR-72”稻米品種栽培並不普遍,也未被消費者、農夫及麵粉業者廣泛地接受,因此不合適商業化生產,雖然菲律賓嘗試其他較受歡迎的品種來進行基改轉殖,但迄今尚未成功。 基於基因稻米對於環境安全和人體健康所帶來的影響是無法預知的,綠色和平組織抗議菲律賓政府加速推動生技農作物的計畫。菲律賓所面臨的挑戰不單僅是綠色和平的抗議,另一個因素因為氣候的不穩定而影響了稻米的產量,今年生產量僅148萬噸,距離目標?151萬噸,因此仍需仰賴進口稻米來彌補這不足的差距。 菲律賓稻米研究中心執行長Leo Sebastian認為,基改稻米並不是解決稻米供應不足的唯一方式,引介栽種高生產量的稻米品種或者改善灌溉系統等都是可行的方式。
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)