本文為「經濟部產業技術司科技專案成果」
英國內閣辦公室於2015年7月13日宣布開啟「2015年開放政府夥伴英國國家行動計畫」,認為身處於轉型於科學與技術、面臨了資訊革命的世界,資訊開放可以促使英國政府現代化作業,這也是讓英國邁向較佳未來的最好方式。現在英國社會已然是此一趨勢,而英國政府的任務就是讓其更佳發展,「開放政府夥伴國家行動計畫」(Open Government Partnership National Action Plan)就是英國政府規劃發展的藍圖,承諾將提供給民眾一更加開放及有責的政府。 而英國政府目前已就部分政策(資訊公開、反貪腐、財政透明以及公開政策形成過程)有相關發展,分述於下列七點摘要說明: 更高的有責性(accountability):當英國政府開始公佈其政府部門相關出差數據後,英國政府發現高階官員變得更加傾向於搭乘飛機時乘坐經濟艙,以減少開銷。而溫莎-梅登黑德皇家自治市鎮議會(Windsor and Maidenhead Council)發布了公部門建築物的即時能源使用資訊,因此協助公部門減少16%的能源帳單費用。 更佳的資訊管理:英國政府發現,將訊息公開並使其可以利用,促使英國政府本身成為更佳成熟的資訊使用者。不僅英國政府會具備更高的有責性,同時也更能獲得公眾的資訊,而資訊公開則可使英國政府的決策具有實證依據。 資訊更加公開:資訊公開的優點不僅可使英國政府獲得公眾之資訊,同樣地公眾亦可得到政府的資訊,進而提升英國政府公共服務的水準。 數據經濟(data economy):目前英國有上千家創業的新興公司正在設法取得政府創新利用的相關資訊,透過資訊的公開亦同時可幫助英國此類數據經濟的成長。 國際合作:英國政府認為於在政府透明化方面需要更多的國際合作。英國政府將以官方協助的立場公開資訊,支持採掘產業(extractive industries)財政透明的全球性標準,並承諾建立一個公司受益所有權(company beneficial ownership)的註冊中心單位,將會有關於英國各家公司最終擁有及實質管控者清楚的資訊來源,藉此打擊貪腐弊案。 地方授權:除了上述所提者,英國政府同時亦要將此規劃落實到各地,將授權予蘇格蘭、威爾斯、北愛爾蘭以及英格蘭的城市等地區。從蘇格蘭聯合政府的運作,到曼徹斯特其地方企業夥伴(Local Enterprise Partnership, LEP)公開資訊的利用,這些設置都可以作為彼此學習的借鏡,並將開放政府的原則擴散到全英國。 採取如維基(Wiki)的模式形成政策:英國政府認為應該要朝向維基百科(Wikipedia)運作的模式發展,於政策規劃方面採取與各方更高度合作的方式進行,可使資訊得以廣泛擴散。
澳洲聯邦法院判決藥品仿單受著作權保護澳洲聯邦法院近日在Sanofi-Aventis Australia Pty Ltd與Apotex Pty Ltd一案中([2011] FCA 846),首次針對記載藥品資訊的仿單著作權侵權問題進行處理。法院判決Sanofi的Leflunomide藥品仿單含有Sanofi員工相當的知識與判斷,係Sanofi員工的共同著作,受到著作權的保護。法院並進一步判決Apotex的Leflunomide藥品仿單重製了Sanofi 的Leflunomide藥品仿單的重要部分,在係爭案件中,亦無法推斷出有默示的授權,因此判決Apotex侵犯了Sanofi的Leflunomide藥品仿單的著作權。 儘管藥品仿單的複雜問題目前仍備受爭議與討論,澳洲將在醫療物品修正法案(Therapeutic Goods Legislation Amendment (Copyright) Act 2011)中,針對相關問題加以釐清。前述修正案針對1968年著作權法(Copyright Act 1968)新增44BA條,該條項賦予在1989年醫療產品法(Therapeutic Goods Act 1989)25AA條款下有關醫藥產品資訊的合理使用範疇,明確規範包括供給、重製、發行、散佈/傳播(communicating)、改作等利用全部或部分醫療藥品資訊的行為不侵害產品資訊的著作權。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
世界經濟論壇發布《2022年全球網路安全展望》世界經濟論壇(World Economic Forum, WEF)於2022年1月18日發布《2022年全球網路安全展望》(Global Cybersecurity Outlook 2022),以面對因COVID-19大流行所致之遠距辦公、遠距學習、遠距醫療等新形態數位生活模式快速發展,以及日漸頻繁之具破壞性網路攻擊事件。為考量國家應優先考慮擴展數位消費工具(digital consumer tools)、培育數位人才及數位創新,本報告說明今年度網路安全發展趨勢及未來所要面對之挑戰包括如下: COVID-19使得工作習慣轉變,加快數位化步伐:約有87%企業高階管理層計畫透過加強參與及管理第三方的彈性政策、流程與標準,提高其組織的網路韌性(cyber resilience)。 企業資安長(chief information security officers, CISO)及執行長(chief executive officers, CEO)之認知差異主要有三點:(1)92%的CEO認為應將網路韌性整合到企業風險管理戰略中,惟僅55%CISO同意此一作法;(2)由於領導層對網路韌性認知差異,導致安全優先等級評估與政策制定可能產生落差;(3)缺乏網路安全人才以面對網路安全事件。 企業最擔心之三種網路攻擊方式為:勒索軟體(Ransomware attacks)、社交工程(social-engineering attacks),以及惡意內部活動。惡意內部活動係指企業組織之現任或前任員工、承包商或業務合作夥伴,以對組織產生負面影響方式濫用其關鍵資產。 憂心中小企業數位化不足:本研究中有88%之受訪者表示,擔心合作之中小企業之數位化程度不足,導致供應鏈或生態系統中使其網路韌性受阻。 網路領導者認為建立明確有效的法規範,將有助於鼓勵資訊共享與促進合作。