美國聯邦通訊委員會(FCC)主席Genachowski於2009年9月21日表示,FCC將提出新的網路開放指導原則,要求包括無線網路服務提供商在內的業者,維持網路中立,不得因傳送或下載資訊種類之差異而進行流量差別管理。此提案若經同意,預計將能有效避免如AT&T、Verizon與Comcast等大公司故意阻斷或是降低特定消耗大量頻寬網頁流量,或對不同用戶收取差異價格的情況。
現行的網路開放原則係於2005年提出,僅要求網路營運商不得阻斷(stop)使用者接取合法的網路內容、應用與服務,或抵制(prevent)不讓使用者以無害的設備,如智慧手機,連線接取相關服務。 FCC預計在現行的指導原則上加入兩條新的原則,以更確保網路的開放與中立性。此兩條新的原則包含對寬頻網路服務提供業者不得歧視的網路內容與應用規範之種類,以及對網路服務提供業者透明化其網路管理作法之要求等。
FCC主席表示,雖然這樣的提案肯定會遭受到電信業者的反對,但FCC仍應積極維護網路公開與自由。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國建置著作數位著作授權平台(Copyright Hub),為數位時代增添授權管道英國智慧局於今 (2013) 年3月底時宣布投入15萬英鎊(約683萬元台幣)啟動一項名為「數位著作授權平台」(Copyright Hub)的建置計畫,並於今年7月正式上線,提供權利人、利用人、以及市場等關於著作權的授權相關事宜。 根據該平台籌設小組所提出的營運方針 ,初步觀察該平台的定位與功能可歸納出三項特點: 一、平台定位為連結利用端與權利端之入口門戶(Portal) 該匯集平台的定位為連結(connect)利用端與權利端的入口門戶,屬於一種著作權資訊匯集中心;只要涉及與著作權相關的內容作品,都可以加入此平台,不限於數位形式的內容作品,該平台並非要取代現有的市場機制,而係在促進現有的集體管理團體、作品登錄單位(Registry)以及跨領域之間有關著作權之交流。 二、平台的主要功能在於媒合權利端與利用端 平台主要提供的服務內容為協助利用端找尋合適的內容以及權利資訊,降低其在海量的數位世界裡搜尋的成本。即平台作為第三方的媒合者,協助兩端進行相關授權事務,利用人可透過該平台向權利人提出授權申請,或是由權利人向不特定或潛在的利用者提出授權的邀約。另外,透過平台的資訊彙整機制,也可降低授權的爭議,例如專屬授權的重疊,以及授權範圍的疑義等等。 三、平台透過數位權利管理資訊系統搭配管理碼達成目的 目前數位作品(Copyright Management System)已蔚為趨勢,因此該平台希望藉由多媒體識別網絡(Multimedia Identifier Network),在每一個數位作品加入一個管理碼,用以管理作品的權利資訊(包括授權內容等訊息)。此外,平台未來也會建立識別不同國際標準碼的機制,讓使用不同國際標準碼之作品在此平台上都能夠互相轉換或辨識。 目前數位著作授權平台(2013年七月初)已經成立,不難發現英國政府的企圖心,欲透過此一平台媒介進一步將英國的音樂、圖像、影音透網絡推廣到世界。從文化層面來說,係希冀透過該媒介再傳遞或散布英倫三島的文化,進而透過間接或直接產生經濟上的價值反饋。我國向來蓬勃發展的音樂產業、出版產業、以及近來興起的影音產業,在華語世界或是亞洲等,競爭力不亞於其他國家,甚至近來流行文化已經深入擴散到鄰近國家當中,我們如何透過科技媒介整合文創產業,進而增加經濟上的產值,英國政府的此種思維脈絡足堪借鏡。
歐盟法院關於瑞典海盜灣線上分享平台(The Pirate Bay)之侵害著作權判決-歐盟法院(以下簡稱CJEU)於2017/07/14在Stichting Brein v Ziggo案中做出決定,認定瑞典海盜灣線上分享平台(The Pirate Bay,以下簡稱TPB)使用BitTorrent分享軟體涉及侵害公開傳輸權。 案例事實如下: Ziggo等網路服務供應業者(以下簡稱:ISP)之眾多用戶,在未得權利人同意之情況下,使用TPB平台經由BitTorrent軟體分享及下載存於用戶電腦之作品檔案。荷蘭著作權團體Stichting Brein向荷蘭法院聲請對該等ISP業者發出禁制令,令其阻斷TPB之IP網址及網域名。本案由荷蘭最高法院向CJEU提出判決先訴問題,確認在歐盟著作權指令第3(1)條下, TPB等網站管理者於其平台上雖不提供作品檔案,但使用前述分享軟體使網站使用者得搜尋並下載受著作權保護之作品,是否構成對公眾傳輸行為? CJEU之認定如下: 任何讓用戶得接近利用受保護之著作物,即構成歐盟著作權指令第3(1)條稱之傳輸行為。在本案中著作物是經由TPB,使平台使用者能於任何時間及地點接近利用著作物,雖著作物檔案是由其他使用者而非平台業者提供,但平台業者在使作品被接近利用上扮演者關鍵角色,例如將檔案作品分類、消除過時及有錯誤檔案等使作品檔案容易被定位及下載。 CJEU又指出, TPB已被告知其平台提供未經授權之著作物檔案,仍鼓勵使用者於平台上下載違法檔案,並經由廣告賺取可觀營收,故TPB不能主張其無從得知行為之違法性。因此CJEU認定TPB協助違法接近利用及分享著作物之線上平台,是足以構成著作權之侵害。
德國「智慧聯網倡議」德國聯邦經濟及能源部於2016年9月1日公布數位議程框架新的經費公告,以支持智慧聯網示範的實施與推廣。德國聯邦政府於2015年9月公布的智慧聯網(Initiative Intelligente Vernetzung)戰略,該戰略實施的4個面向如下: (1)應用領域的支持:聚焦教育、能源、衛生、交通和管理五大應用領域的數位化和智慧化運用及發展,並排除相關實施障礙; (2)促進合作:促進資通訊技術與五大應用領域間的跨領域溝通與合作; (3)改善框架條件:加強投資環境並消除相關障礙;保護隱私權及加強網路安全;制訂相關標準化作業;提升商品或服務市場競爭力; (4)加強各界參與:促進各界參與及討論,共創及共享經濟利益。德國聯邦政府基於該戰略計劃,提出智慧聯網倡議,及提供開放式創新平台,促進不同領域的合作及整合運用,將有助於產業價值及競爭力的提升,並提高國際間合作的機會。 我國為發展智慧聯網相關產業,曾推出包括「智慧辨識服務推動計畫」、「智慧聯網商區整合示範推動計畫」等相關應用服務整合及解決方案計畫,今年更陸續推出「亞洲‧矽谷推動方案」、「數位國家‧創新經濟發展方案」,藉以提高數位生活服務使用普及率,並以創新驅動產業升級轉型。