Eolas,一家由加州大學資助成立的軟體技術研發公司,於1999年控告微軟侵犯了一個關於瀏覽器技術的專利 – US 5,838,906。該專利所揭露的技術讓微軟的IE瀏覽器得以嵌入互動式內容的外掛(plug-in)程式。2003年,美國芝加哥法院認定微軟侵犯906專利,並判決微軟必需賠償Eolas及加州大學5.21億美元。2007年,微軟終於暫時與Eolas達成和解,但兩家公司都不願透漏和解的內容。
美西時間2009年10月6日上午,Eolas大動作地控告包含科技業的Adobe、Amazon、Apple、eBay、Google、Sun Microsystems、Texas Instruments、Yahoo、YouTube,以及非科技業的Citigroup、JPMorgan Chase …等共22家公司,侵犯上述906專利以及其所衍生的US 7,599,985專利。Eolas表示:「985專利是 906專利的延續,其所揭露的技術能讓網站透過附加元件和Ajax網頁開發技術的使用,為其線上服務加入完全互動式的嵌入應用軟體。」
此外,Eolas總裁Michael Doyle博士也表示:「我們只想獲得公平的對待。本公司在15年前就已經研發並廣泛的展示這些技術。使用本公司的技術來營利且未付出合理報酬的情形對本公司並不公平。」 至於被控告的大多數公司目前都尚未做出正式的回應。
為因應近來智慧聯網(IoT)、巨量資料及雲端運算發展趨勢,為強化線上隱私權利及促進歐盟數位經濟的發展,歐盟執委會於2012年1月25日對於資料保護指令提出新的規章草案:「保護個人有關個人資料處理及自由流通規章(一般資料保護規章)」(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the protection of individuals with regard to the processing of personal data and on the free movement of such data (General Data Protection Regulation)),以取代並廢除(repealed)原有「個人資料保護指令」規範,並修改(amend)「隱私與電子通訊指令」,預計在2013年6月進入歐洲議會、理事會及執委會的三方協商,若順利將在2014年通過,並在2016年生效。 「一般資料保護規章」(草案)中對於聯網環境及智慧化設備運行之因應,重要規範內容有(1)追蹤(tracking)與特徵分析(profiling):訂定第20條「特徵分析措施」(Measures based on profiling)規範條文,保障每個當事人皆有主張不被採取特徵分析措施(如個人傾向、工作表現、財務狀況、位址、健康、個人喜好、可信度)而致產生法律效果或顯著影響該個人的權利(2)被遺忘及刪除權(right to be forgotten and to erasure):訂定第17條,創設新的權利「被遺忘及刪除權」,用以幫助民眾處理線上資料,當其不希望自己的資料被利用且無合法理由保留時,資料將被刪除(3)資料可攜權利(the right to data portability):訂定第18條,當資料處理是以電子化方法,且使用結構性、通用的格式時,資料當事人有權利可以取得該結構性、通用格式下的個人資料,更容易自不同服務提供者間移轉個人資料。(4)當事人的同意要件:第4條第8款明定,不論何種資料處理情況時所需的同意,增列必須是明確(explicitly)同意之要件(5)「設計階段納入隱私考量」(privacy by design)、「預設隱私設定」(privacy by default):訂定第30條,要求資料控制者及處理者應實行適當的技術性、組織性措施,並考量科技發展水準,制定特定領域及特定資料處理情況的標準及條件,並且資料保護將會從產品及服務最初發展、設計時就考量隱私問題應對「設計階段納入隱私考量」及「預設隱私設定」提出標準及條件。 歐盟此次對於「一般資料保護規章」(草案)的修法進程,以及世界各重要國家的立場及反應態度,均值得後續密切觀察研析。
加州新修正法規要求公司董事會必須包括女性加利福尼亞州(下簡稱加州)州長Jerry Brown於2018年9月30日簽署了一項新法案,規定在加州註冊成立的上市公司以及總部位於加州並在美國證交所上市的外國公司(如德拉瓦州公司),都必須在2019年底之前,於其董事會安排至少一位女性擔任董事,否則將面臨處罰;而此項新規定,亦使加州成為美國第一個要求上市公司將女性納入董事會的州。 此項規定並規定,在2021年年底前,若董事會的規模為6名以上,至少需有3名女性董事,若董事會的規模為5名成員,則至少需有2名女性董事,若董事會規模為4名以下董事,則至少需有1名女性董事。違反此項規定,將受到以下處罰:(1)首次違反處以10萬美元的罰款;(2)再度違反處以30萬美元的罰款,隨後再處以每次違反的罰款。 根據統計,日前在美國3000家最大的上市公司的董事會組成中,女性僅占其中18%,於2017年,更有624家上市公司的董事會中根本沒有女性。該法案表明,促進公司董事會性別平等不僅可以改善所有女性的職場機會,同時還能提高生產力,其依據是瑞士信貸(Credit Suisse)於2014年所作出的一項研究,該研究發現,擁有全男性董事會的公司,其平均股本回報率(Return on Equity, ROE)為10.1%,而擁有至少一名女性董事的公司,其平均股本回報率為12.2%。 根據彭博社(Bloomberg)於2019年的一項新分析,此項變革可為女性提供692個席次,並足以導致美國公司董事會整體性別平衡產生顯著的變化。此外,新紐澤西州(New Jersey)和馬薩諸塞州(Massachusetts)亦在考慮進行類似的立法,其他州也通過了不具拘束力的準則。根據統計,若其他州採用和加州相同立法,羅素3000(Russell 3000)中的公司需要在幾年內為女性開放3732個董事會席次,全國董事會的女性人數將增加近75%。 縱使該法案的反對者認為,這將增加企業改善種族和民族多樣性的難度,並質疑法案的適法性,然該法案的提出者仍認為,此一措施對於提升女性的代表權是必要的,相信當董事會組成多元化,女性的聲音能被聽到時,對整體勞動力的改善會是更好的。
何謂「國立研究開發法人」?國立研究開發法人為日本法制度下三種獨立行政法人類型的其中之一(其餘兩種為中期目標管理法人、與行政執行法人),任務乃是獨立於國家,發揮一定程度之自主性與自律性,從事在國民生活或社會經濟安定性等公益目的上所必要,但不須由國家為主體來執行的科學技術之實驗、研究與開發,並且這些科技研發業務,係基於具備一定中長期政策目標之計畫而進行,目的在於最大限度地確保得以提升國家科技水準、同時攸關經濟健全發展及其他公益的研發成果,並被期待產出得參與國際競爭的世界頂尖水準之新創科技,作為國家戰略的一環,同時專注於基礎科學與國家核心技術的研發。但在國立研究開發法人中,其所屬職員的身分並非公務員。 現在日本共有將近30個獨立研究開發法人,如日本醫療研究開發機構、森林研究‧整備機構‧新能源‧產業技術總合開發機構(NEDO)、國立環境研究所等。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。