2009年5月,在日本「智慧財產戰略本部」所屬「以智慧財產進行競爭力強化專門調查委員會」(知的財産による競争力強化専門調査会)下所成立之「先進醫療專利檢討委員會」(先端医療特許検討委員会),針對日本在先進醫療技術領域的專利保護制度進行檢討,其中提出建言,建議修訂專利審查基準,將以下的醫療相關發明類型納入可獲專利保護之發明標的:1.既有醫藥品用法或用量之改良,其可以大幅改善藥物副作用或提升服藥後生活品質,同時其效果超越專家所能預想之程度;2.輔助醫師進行最終診斷之人體有關資料收集方法,例如核磁共振攝影(MRT)或電腦斷層掃描(CT)等技術相關發明。上述建言之後被納入智慧財產戰略本部所公佈之「智慧財產推進計劃2009」(知的財産推進計画2009)中,列為2009年度日本政府應執行之智慧財產權相關重要政策措施其中的一項,而前者便是所謂的藥品服用法發明專利。
這而日本特許廳根據上述政策決議,在2009年8月提出依委員會建議所修訂之專利審查基準修訂草案,而在完成徵詢公眾意見的行政程序後,於2009年11月正式公告成為新版的專利審查基準。
其中在「醫藥發明」部分,新版專利審查基準言明,若醫藥發明其成分與先前技術的醫藥品並無不同,同時適用之疾病症狀亦無不同,但其因為其所揭示的特定用法或用量,致使其在適用於特定疾病時會產生不同之效果時,這樣的發明仍會被認定為具有新穎性。而若此新用法或用量之醫藥發明相較於先前技術,其所產生之更有利效果,為發明當時相關技術領域具有通常知識者所可預期者,則此發明將不具備可專利性要件所要求之進步性,而無法獲得專利保護;反之若此新用法或用量之醫藥發明產生之有利效果,為超出發明當時相關技術領域具有通常知識者所可預期範圍之顯著效果,則此發明之進步性便會被肯認。因此,新版專利審查基準不僅言明了新用法或用量之醫藥發明可專利性要件審查之判斷標準,也明確將此類型之發明納為可受專利保護之標的。
本文為「經濟部產業技術司科技專案成果」
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
日本2018年7月27日發布最新3年期網路安全戰略(サイバーセキュリティ戦略)日本網路安全戰略本部(サイバーセキュリティ戦略本部)於2018年7月27日發布最新3年期網路安全戰略(サイバーセキュリティ戦略),其主要目的係持續實現「提昇經濟社會活力與永續發展」、「實現國民安全且安心生活之社會」、「維持國際社會和平、安定與保障日本安全」三大目標,並透過7月25日同樣由網路安全戰略本部(サイバーセキュリティ戦略本部)發布之網路安全年度計畫2018(サイバーセキュリティ2018),執行下述資安對策的細部計畫與做法。 以下簡述依據日本三大資安目標所提出之重要資安對策: 提昇經濟社會活力與永續發展 (1) 推動可以支援創造新價值之網路安全措施。 (2) 實現可以創造價值之網路安全供應鏈。 (3) 架構安全物聯網(Internet of Things, IoT)系統。 實現國民安全且安心生活之社會 (1) 制定網路犯罪之因應對策。 (2) 官民一體共同防護關鍵基礎設施。 (3) 強化與充實政府機關之網路安全。 (4) 確保大學能建構安全與安心之教育與研究環境。 (5) 展望2020年東京奧運與未來之措施。 (6) 強化情資共享與合作體制。 (7) 強化應變大規模網路攻撃事態之能力。 維持國際社會和平、安定及保障日本安全 (1) 堅持自由、公平且安全之網路空間。 (2) 建立支配網路空間之法律秩序。 (3) 強化日本網路防禦力、抑制網路攻擊能力與掌握狀況之能力。 (4) 強化掌握網路空間狀況之能力。 (5) 國際合作。
歐盟RELIEF計畫於今(2016)年11月展開前商業化採購之市場公開徵詢有鑑於許多歐盟國家為日漸高漲的健康照護成本所困,歐盟於Horizon 2020政策下陸續推動會員國合作以更有效益的創新採購方式進行健康照護計畫的推展,以降低健康照護預算的壓力,RELIEF計畫即屬其一。歐盟於2016年2月啟動RELIEF計畫,聯合義大利、西班牙、瑞典三國,目的在發展創新ICT解決方案以協助慢性病患透過自我管理方式舒緩慢性疼痛、能夠持續獨立生活。欲採購的ICT創新服務為目前尚不存在於市場上、仍需經研發之解決方案,實為針對慢性疼痛自我管理解決方案的「研發服務」,該計畫係採「前商業化採購(Pre-Commercial Procurement, PCP)」方式進行跨國公告招標。目前RELIEF計畫正在進行PCP準備階段之公開市場徵詢,除了透過2個月(今年11、12月)的公開線上問卷調查業者意見,另將以workshop形式舉辦三場公開市場徵詢會議。 RELIEF計畫另一重要目標就是透過此計畫以建立完整PCP流程,讓未來參與相關計畫的公部門能夠熟悉並妥善運用PCP流程及工具 。「前商業化採購」為歐盟廣泛創新戰略中所指出能協助公部門採購「研發服務」的特殊採購程序,以滿足尚未存在市場上、仍需經研發的技術性創新需求,此程序不包含對研發成果的商業化採購,亦不受政府採購法之規範,能夠從需求面刺激廠商創新研發,讓研發從一開始即以機關需求為核心。 RELIEF計畫劃分為PCP之準備階段以及執行階段。於準備階段會進行PCP招標文件準備、採購團隊的需求及現有技術分析、公開市場徵詢(Open Market Consultation, OMC);由於採購機關對其需求尚無具體的規格描述,必須經廣泛的市場意見徵詢與溝通以進一步定義,正在進行中的OMC將聚集採購團隊、潛在投標者(例如對健康照護、數位照護、病患賦權與互動性有鑽研之ICT業者)、終端使用者等,以廣蒐相關利害關係團體意見並進行充分互動溝通,作為執行階段的重要參考基礎。 PCP正式公告後的執行階段即區分為階段A「解決方案設計(Solution design)」(計半年)、階段B「原型開發(Prototype development)」(計半年)、階段C「商業化前開發:場域測試(Pre-commercial development: field test)」(計一年)。各階段將設定參與廠商應達成目標,以篩選出較符合需求者始得進入下一階段,以維持廠商間良性競爭,於階段C最後決標予研發成果最符合計畫需求之廠商(可能1家以上)。 歐盟目前的創新推動策略上PCP屬尚未被充分運用的工具,從該計畫的規劃可見準備階段對後續PCP執行階段的重要性,透過其示範可供政策規劃者為借鏡,運用創新採購驅動產業創新發展以更有效益解決社會與政府需求。
英國發布《太陽光電發展路徑》政策報告,推動屋頂光電革命加速能源轉型英國工黨政府為解決當前民生、產業用電,過於仰賴化石燃料價格波動的社會課題,於2025年6月30日發布《太陽光電發展路徑:太陽能如何驅動英國》(Solar roadmap: United Kingdom powered by solar),透過62項具體的政策行動,減輕用電負擔,可視為歐盟《可負擔行動計畫》(Action Plan for Affordable Energy)的英國光電版本。 為實現2024年年末發布的《2030潔淨電力行動計畫》(Clean Power 2030 Action Plan)的政策目標,即2030年從目前裝置容量18GW,提升到45至47GW,該報告宣示將啟動「屋頂光電革命」(Rooftop Revolution),克服長久以來阻礙商業、住宅與公共建築物屋頂布建的障礙,政策方向擬定如下: 1. 發展「大英能源公司」(Great British Energy)的潛力,如目前已推動英格蘭約200所學校、醫院等安裝屋頂太陽能,降低電費支出。 2. 預計將修訂新建、既有住宅的《溫暖住宅計畫》(Warm Homes Plan)與《未來住宅與建築標準》(Future Homes and Buildings Standards),如規範新建築物裝設太陽光電的義務。 3. 針對大型戶外停車場建置太陽能車棚,進行意見徵詢。 4. 簡化利害關係人協作流程,如研擬工業、商業類型建築物出租屋頂安裝太陽能的標準合約範本。 英國政府除積極推動屋頂光電外,亦針對電力網路、供應鏈、培養人才、國土計畫、社區參與等,規劃一系列太陽光電發展路徑中的配套措施,如改善英國國家能源系統營運商(National Energy System Operator, NESO)併網流程,要求應確保併網申請順序的分配保持公平;並於《大英能源法》(Great British Energy Act 2025)規範大英能源公司於採購時,得拒絕與任何供應鏈中涉及強迫勞動的廠商簽約等;並與英國太陽能產業協會(Solar Energy UK)協作,促成產業實踐社區參與溝通。