法國政府基於保護電影、音樂等產業,在2009年3月提出將採取「三振法案」(Three-strikes law),對於不法使用網路下載音樂和檔案者,祭出明確的管制。第一階段違法者將會收到電子郵件警告,第二階段會收到書面之警告,第三階段將切斷該網路連接最長1年。
但這個提議在2009年4月遭到法國議會否決,有議員表示這項規定是「危險、無用、無效率且對民眾有相當大之危險。」消費者團體則表示,「無辜的民眾將會受到處罰,而駭客等真正的犯罪者則可以利用入侵他人之帳號規避法規,而且,該架構顯然缺乏配套的監督機制。」
無獨有偶的是,歐洲議會(European Parliament)也在同年11月針對歐盟電信信改革(EU Telecoms Reform)之討論,駁回該議案。議會認為,對人民通過網路使用服務和應用而進行的網際網路連接行為,在採取的措施時,應該尊重基本的人權和自由。這些限制權利的手段必須符合民主社會的法規,必須有效、公平和公正,比如通過法院進行審理等。而法國所提之切斷網路連接的三振法案與此原則不符。
總部位於亞特蘭大的ZapMedia媒體服務公司於2008年3月12日向美國德州東區地方法院控告Apple的iTunes線上音樂店與iPod音播放器侵害ZapMedia專利技術,其申請的兩項專利,先後於2006年3月(專利號7,020,704)與ZapMedia提申訴訟前一日2008年3月11日(專利號7,343,414)獲取美國專利權。 就ZapMedia提出爭議技術,主要透過伺服器向多媒體播放器傳送音樂和其他數位電子內容,其專利主要包含一媒體程式庫資料庫伺服器,使用者可經由一或多個通訊網路存取伺服器中主要程式庫內多媒體資料。其伺服器中包含複數個多媒體播放器,以供存取多媒體資料之用。每個多媒體播放器包含一處理器以執行客戶端應用程式,使用者可經授權許可運用其多媒體資料。ZapMedia技術開發後陸續向全球多家科技和媒體公司推銷,其中亦包括Apple。ZapMedia指出,Apple沒有徵求ZapMedia同意,分別於2001年10月推出iPod MP3和iTunes連結的播放器,以及2003年4月推出iTunes線上音樂店。就市場研究單位「NPD集團」分析指出,iTunes的成功,促使Apple在美國僅次沃爾瑪百貨(Wal-Mart)成為第二音樂零售業者。故ZapMedia要求Apple應依去年iTunes和iPod銷售額約110億美元補付ZapMedia權利金。 ZapMedia指出從2006年6月至2007年秋天已試圖多次與Apple協商,並請Apple購買許可證,以授權方式有效使用ZapMedia的專利技術。然而Apple對此無表達任何意見,使得Zap採取提申訴訟動作。
以Apple Pay服務捲入營業秘密糾紛案為例,提醒企業合作應留意的機密管控作法2025年8月6日,行動支付技術開發公司Fintiv向喬治亞州北區聯邦地方法院亞特蘭大分院控訴Apple科技公司以詐欺手段竊取Fintiv公司的前身公司CorFire的專屬行動支付技術,違反《保護營業秘密法》(Defend Trade Secrets Act,DTSA)及《喬治亞州營業秘密法》(Georgia Trade Secrets Act,GTSA)等規定,向法院尋求賠償。 Fintiv公司主張Apple公司在2011年至2012年間,以行動支付技術之業務合作為由,與CorFire公司進行多次技術性洽談。Apple公司利用雙方簽訂之保密契約,取得CorFire公司的行動支付技術的詳細實施方案之接觸權限,並要求CorFire公司上傳部分機密資料至Apple公司管理的共享平臺,以促進合作交流關係,最終Apple公司放棄與CorFire公司的合作計畫,Apple公司卻將協商期間所獲技術內容整合,並應用於其在2014年推出的Apple Pay行動支付服務。Fintiv公司進一步主張Apple公司為將Apple Pay商業化,與信用卡處理商及銀行組成企業聯盟,並隱瞞其非法取得技術的真相,宣稱Apple公司自主研發Apple Pay。Fintiv公司指出,Apple公司此舉不僅損害Fintiv公司的合法權益,也嚴重破壞市場競爭秩序。此外,Fintiv公司表示,Apple公司多年來有系統地採取類似策略,如以合作名義獲取其他企業之機密,進而不當使用多項機密以進行商業化使用。 觀察前述實務案例可得知,即使雙方基於保密契約交換機密資料,仍存在終止合作衍生的機密外洩糾紛,如:機密資料歸屬不清、逾越授權範圍使用機密資料等風險。建議企業在「資料提供前」,應先透過「盤點」營業秘密與機密「分級」,確認合適揭露的機密資料,再藉由「審查」機制確認必要揭露的內容;在「資料提供後」,要求他方提供機密資料之「收受證明」以明確歸屬,並在合作關係結束後,要求他方「聲明返還或銷毀機密資料」,以降低他方不當使用機密資料的風險。 前述建議之管理作法已為資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」所涵蓋,企業如欲精進系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
WIPO收到第一百萬件國際專利申請世界智慧財產權組織(WIPO)已於2005年初正式宣告收到第一百萬件國際專利申請,並向全世界的創新者表示敬意。國際專利的申請係規範於〔專利合作條約〕(PCT),WIPO總幹事卡米爾‧伊德里斯博士對PCT創建26年歷史上的這一里程碑表示技術進步的步伐在大大加快,並反映了智慧財產權制度對刺激技術發展和豐富公有知識領域所作出的貢獻。 PCT簡化了公司和發明者在多個國家獲得專利權的程序,且公司和發明者如以各自國家專利制度所規定的規則和條例辦理專利申請事宜,則有可能發生喪失專利權的情況。 PCT體系的成員包括美國、日本、德國、英國和法國等先進發展國家,惟部份發展中國家所提出的國際專利申請量也正持續快速增加,表現最為突出的是印度與韓國,這兩個國家在2003年的國際專利均呈現倍數成長的趨勢。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現