美國國會於今年(2009)11月18日提出「聯邦檔案安全分享法案(Secure Federal File Sharing Act)」,內容主要是限制所有政府部門員工(包含約聘制人員),在未經官方正式同意之前,不得下載、安裝或使用任何點對點傳輸(Peer to Peer, P2P)軟體。期望藉由該法案的通過實施,徹底防堵政府及相關個人機敏資料的外洩。
該法案的制定,最初來自於政府部門對其財務資料保護的要求,早於2004年白宮管理及預算辦公室(The White House Office of Management and Budget)即已建議聯邦政府的各個單位應禁止其職員使用P2P軟體,以防止資料外洩。而於將近一個月前,國會道德委員會取得多位國會議員的財務狀況、經歷及競選贊助金額,並作成調查報告,未料一位新進職員將該份未經加密保護的報告存於自家裝有前述P2P軟體的電腦硬碟中,從而導致該份報告內容全部外洩。此一事件立即對向來注重政府及個人資料保護的美國投下了震撼彈,也促使該法案正式浮出檯面。
歐此項法案的提出毫無意外地得到視聽娛樂產業界的正面支持。主因來自多數人藉由此種軟體在網際網路上分享音樂、影片或其他應用軟體,時常侵害他人的智慧財產權,而法案的內容則是要求政府部門員工無論是在工作或是家中使用P2P軟體都須取得官方授權,無疑是直接限制了上述的分享行為。娛樂業者更進一步指出,P2P軟體對資訊安全的危害在於多數人無法明確知道該軟體的運作方式,而無法對其做正確的設定,使得軟體一旦被啟動,電腦內的所有資料:包含個人的社會安全卡號碼、醫療及退稅紀錄等,就立即暴露於網際網路之中!對此,除了推動此項法案的官員大聲疾呼:「用個人自律的方式防止資料外洩已經失敗,證明國會應該有所行動。
美國錄音產業協會(Recording Industry Association of America)則是預測前述國會調查報告的外洩,將會是資安法案重整的強力催化劑。
去年七月日本成立的「漫畫、動畫盜版對策協議會」上個月開始了所謂「MAG PROJECT」,針對中國、美國與歐洲等海外約100個提供盜版的網站,以約5個月的期間,透過電子郵件集中請求刪除盜版內容。 主要打擊對象為提供影音分享的網站、提供漫畫線上閱讀的線上閱讀網站與累積大量盜版資料的儲存空間網站等,在不聽從刪除請求的場合,向當地法院提起訴訟等法律措施也在此次盜版對策的考慮之列。主要保護對象預計包括在日本海外也相當熱門的「one piece(海賊王)」、「名偵探柯南」等總計約580部作品。 「漫畫、動畫盜版對策協議會」包括有東映動畫、吉卜力工作室、角川、講談社、小學館、集英社等等總計15家企業參加,由CODA(內容海外流通促進機構)負責事務局。 提到盜版,以往主要是重製的漫畫書跟DVD,而現在的主流則是網路。盜版在日本海外網路開始流通的時候,約莫是寬頻開始普及的2006年前後。在盜版流通的背景,除大容量的傳輸變成可能之外,還包括有在美國等地出現的日本動畫熱潮,以及Youtube等動畫分享網站的出現等等因素存在。 根據日本動畫協會的調查,2012年日本動畫製作公司的海外銷售金額為144億日圓,相較最近一期高峰值2005年的銷售金額313億日圓,可謂攔腰折半。另據日本經濟產業省25年度的調查,動畫與漫畫盜版造成的損害,光就美國一地來說,推估高達約有兩兆日圓之多。
日本發布Startup交易習慣之現況調查報告最終版,統整新創事業實務上遭遇不公平競爭行為之態樣日本公平交易委員會於2020年11月27日發布「Startup交易習慣之現況調查報告最終版」(スタートアップの取引慣行に関する実態調査について最終報告),主旨為揭露其國內新創事業於交易市場遭遇不公平競爭行為的調查結果。本報告的作成目的,係基於新創事業發展具備推動創新、活絡國內經濟之潛力,故針對各類型新創事業在參與市場交易時,有無因其與相對人間的不對等地位(因需仰賴相對人提供資金或資源),遭遇不公平競爭的情況進行調查。同時,本報告所公布的調查結果,將會作為未來訂定新創事業與合作廠商間契約指引的參考依據,以圖從制度面改善新創事業參與市場的競爭環境。 本報告書所調查的交易態樣,聚焦於容易出現不公平競爭行為的契約或競爭關係,並分別整理主要的行為態樣如下:(1)新創事業與合作廠商間之契約:要求新創事業揭露營業秘密、約定對合作廠商有利的保密協議條款、無償進行概念驗證(Proof of Concept)、無償提供授權、於共同研究契約中約定智財權僅歸屬合作廠商、延遲給付報酬予新創事業等;(2)新創事業與出資者間之契約:要求新創事業揭露營業秘密、負擔出資者外包業務予第三人之費用、購買不必要的商品或服務、提供片面優惠待遇、限制新創事業的交易對象等;(3)新創事業與其他競爭廠商間之關係:競爭廠商要求交易相對人不得向與其存在競爭關係之新創事業買入競爭性商品;競爭廠商針對特定新創事業設定較高的商品售價,而事實上拒絕與其進行交易等。同時,依據報告書,在與合作廠商或出資者進行交易、或訂定契約的過程中,約有17%的新創事業表示曾遭遇「無法接受的行為」(納得できない行為),且當中有約八成的新創事業妥協接受。其中,若為銷售額未滿5000萬日圓、且公司未配有法務人員的新創事業,遇到無法接受行為的事業家數為銷售額5000萬日圓以上、且公司有法務人員之新創事業的2.5倍。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
澳洲隱私專員主張應從嚴認定個人資料去識別化澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)專員今年(2016)4月發表聲明認為,在符合特定條件之情形下,亦即,去識別化過程符合OAIC認定之最高標準時,去識別化後之資料不適用「1988隱私法案」(Privacy Act);澳洲企業組織目前所進行之個人資料去識別化,是否已符合「1988隱私法案」之規範要求,OAIC仍持續關注。OAIC近期準備提出去識別化認定標準之指引草案。 澳洲「1988隱私法案」揭示了「澳洲隱私原則」(Australian Privacy Principles, APPs),就非公務機關蒐集、利用、揭露與保存設有規定,APPs第6條更明文限制非公務機關揭露個人資料,於特定情況下,APPs允許個人資料經去識別化後揭露。例如,APPs第11.2條規定,若非公務機關當初之蒐集、利用目的已消失,須以合理方式將個人資料進行銷毀或去識別化。 如非公務機關係合法保有個人資料,即無銷毀或去識別化義務;此外,若所保有個人資料屬健康資料者,因係澳洲政府機關以契約方式委託非公務機關,非公務機關亦無銷毀或去識別化義務。應注意者,APPs原則上禁止非公務機關基於學術研究、公共衛生或安全之目的,主動蒐集個人健康資料 (APPs第16B(2)條),同時亦禁止基於學術研究、公共衛生或安全目的,就保有之個人資料進行去識別化 (APPs第16B(2)(b)條)。如非基於前述目的,且符合APPs第16B(2)條之要件者,非公務機關始得基於研究、公共衛生或安全目的蒐集個人健康資料 (APPs第95A條)。 其他如「稅號指引」(Tax File Number Guidelines)、隱私專員所提「2014隱私(財務信用有關研究)規則」(Privacy Commissioner’s Privacy (Credit Related Research) Rule 2014) 等,均就個人資料去識別化訂有相關規範。 未來以資料為導向之經濟發展,將需堅實的隱私保護作為發展基礎,澳洲去識別化個人資料認定標準之提出,以及標準之認定門檻,殊值持續關注。