歐盟科學與新科技倫理委員會(European Group on Ethics in Science and New Technologies, EGE)在今(2009)年11月18日公布合成生物學(Synthetic Biology)公布相關之倫理、法制與社會議題之意見,其中指出合成生物學具有可大幅降低生技藥品生產成本的極大潛力,但也可能帶來的風險,故應予注意。
對很多人來說,合成生物學是一個相當新穎的概念,經濟合作發展組織(Organisation for Economic Co-operation and Development , OECD)在其所公布的2030生物經濟發展議程中,將其列為最具有發展潛力的新興生物技術之一,近來更被歐美先進國家視為生物技術產業的未來重點發展方向。
根據OECD的定義,所謂合成生物學,是以工程方法為基礎,以改進微生物的新興領域,此技術使設計與建構新生物元件(part)、裝置(device)及系統(system),及對於既存的自然生物系統,使其更具有使用性。合成生物學的目的,在於藉由設計細胞系統,使其具備特定功能,從而消除浪費細胞能量之非期待的產物,以增進生物效率。目前合成生物學與市場較為接近的案例,乃一種將青蒿(sweet wormwood herb)、細菌與酵素等基因、分子路徑(molecular pathway)作結合,製造出可以生產治療瘧疾(malaria)的青蒿酸之細菌,此項開發成功突破過去僅能透過植物青蒿獲得,並產量有限的瓶頸。
正由於看好和成生物學的發展潛力,美國、英國與歐盟都開始對此項技術可能帶來的倫理、法制與社會爭議進行評估,歐盟EGE更公布意見以作為未來訂定法規範時的參考。EGE在意見中表示合成生物學使用於能源技術、生物製藥、化學工業或材料科學等都深具前景,故建議歐盟執委會應對此技術發展給予支持,並在歐盟架構計畫下,以產業利用為前提,給予經費的支持;然也必須重視其ELSI問題,包括使用合成生物產品的安全性、對環境的長期影響、惡意使用之防免、專利與公共財的爭議等,為了解決此等問題,其也要求各會員國必須針對合成生物學的各種議題,加強與民眾、利害關係人及社會的對話。由於我國一直將生技產業視為發展重點,合成生物學關係著生技產業未來發展,其未來發展實不容為我國所忽略。
本文為「經濟部產業技術司科技專案成果」
卡爾斯魯爾行政法院在今年6月7日公布第一個關於歐盟個人資料保護規則(Datenschutzgrundverordnung,DSGVO)的判決。在本案中,原告是一間負責處個人信用資料的民間公司,其依據現行BDSG(Bundesdatenschutzgesetz,聯邦個人資料保護法)的規定來蒐集、保存與傳輸個人資料給第三人。巴登符騰堡邦的主管機關在預見原告將來會違反DSGVO規定的情況下,向原告發出一份行政處分(Verfügung),要求原告必須依照DSGVO的相關規定調整作業流程以符合DSGVO的規範。但原告認為,其只需要在2018年5月24號之後,就相關作業流程符合DSGVO的規範即可。 本案的關鍵在於,主管機關是否已經可以用DSGVO的規定來規範民間企業?因為依據DSGVO第99條的規定,DSGVO現雖已生效,但必須到2018年5月25日才開始適用。 根據BDSG第38條第5項規定,監督機構可以採取必要措施,確保民間企業在收集、傳播和使用個人資料時遵守相關保護規定;且本案中,原告在2018年5月24號後可能會出現的違法情形也已顯而易見,但法院並不同意行政機關可以預先發布行政處分的看法。因為DSGVO雖已生效,但民間企業必須適用的期限仍未屆至。行政機關不得在未有法律授權的情況下,預先規範限制未來的可能違法行為。現行法律對於行政機關的授權範圍必須被嚴格遵守,在DSGVO未開始適用的情況下,目前行政機關仍只能依據BDSG及DSAnpUG(Datenschutzanpassungs- und Umsetzungsgesetz,個人資料保護調整和施行法)的規定,來處理相關的行政措施。
美國聯邦最高法院禁止警察在未取得令狀前搜索手機內容2014年6月25日,美國聯邦最高法院就Riley v. California一案作出判決,否定了附帶搜索(註)亦適用於行動電話的見解,並要求警察在查看嫌犯手機的內容前必須取得搜索票。 法院見解認為,由於手機裡的資料顯然不會造成執法者人身安全的危險,而在警察取得搜索票的這段期間內,資料也不可能遺失(甚至可以透過切斷手機連線功能,防免資料因遠端移除或加密而遺失),因此手機內容應不在附帶搜索的適用範圍內。判決中另指出,智慧型手機已經成為人們日常生活中無時無刻、無所不在的一部分,其中含有大量的個人資訊,包括通聯紀錄、標記有日期及地點的照片與影片、網路搜尋及瀏覽紀錄、購物清單及GPS定位等,若允許警察在未取得搜索票的情況下查看嫌犯手機,將有可能嚴重侵犯到個人隱私。 首席大法官John Roberts表示:「如果更進一步地細究系爭隱私利益之範圍,用戶在現代手機上所看到的資料,事實上並不儲存在裝置本身。將手機看作一個容器並對其內容實施附帶搜索,這樣的預設是有點勉強的,尤其當手機被用來讀取儲存在他處的資料時,這種說法更是完全無法成立。」 在其協同意見書中,大法官Samuel Alito也認為,相對於非電子資訊,法院為電子資訊提供了更多的隱私保護。同樣是通聯記錄,如果是從嫌犯口袋裡扣押的紙本帳單取得,在法律上毋須取得令狀即得搜索,但如果是儲存在手機裡就不是這麼一回事了。 註:為保護執法者人身安全並防免被告湮滅證據,我國刑事訴訟法第130條規定,檢察官、檢察事務官、司法警察官或司法警察逮捕嫌犯或執行拘提、羈押時,雖無搜索票,得逕行搜索其身體、隨身攜帶之物件、所使用之交通工具及其立即可觸及之處所,學說上稱作「附帶搜索」,為令狀搜索原則之例外。
美國通過最新的電子醫療紀錄之隱私與安全標準美國衛生部隸屬之醫療資訊科技標準委員會(Health IT Standards Committee)為了因應「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, “ARRA”)的通過,制定了新的電子醫療紀錄的隱私、安全標準,以擴大保護電子醫療紀錄的使用安全。 這次制定的電子醫療紀錄的隱私、安全標準,將透過具有足夠防護能力的醫療資訊科技系統標準,來保護電子醫療紀錄的交換,並且擴大適用範圍到醫療照護廠商與提供者,要求其必須在2011年前達到幾項資訊的使用控制標準,包括「醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act, “HIPAA”)與「加密促進標準」(Advanced Encryption Standard)之相關規定,以完備個人電子醫療資訊的保護網。 在此次訂立的標準之下,任何人員或是應用程式欲使用與接近電子醫療紀錄,應符合法律所授予的接近與使用之要件。同時,處理個人醫療資訊的系統,也必須具備對個人醫療資訊加密與解密的能力,以保障個人醫療資訊的安全與完整。除了以上的要求,這些標準也要求相關的適用機構,必須在2013年以前完成符合病歷交換格式(HL7)的使用接近控制、安全宣示標記語言(Security Assertion Mark-up Language, “SAML”)、網路服務認證(Web Service Trust, “WS-Trust”)以及促進資訊標準建置組織(Organization for the Advancement of Structured Information Standards, “OASIS”)的機制,以保障醫療資訊的安全。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。