「智慧財產報告書」:開啟企業與市場之間的對話工具

刊登期別
第21卷,第10期,2009年10月
 

※ 「智慧財產報告書」:開啟企業與市場之間的對話工具, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3199&no=64&tp=1 (最後瀏覽日:2026/02/01)
引註此篇文章
你可能還會想看
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

Google稱著作權訴訟危害公眾傳播自由

  高達十億美元的著作權訴訟案件大大挑戰YouTube,YouTube之母公司Google的律師向美國曼哈頓地方法院(U.S. District Court in Manhattan)提交文件對Viacom最新提出的訴訟作出以下回應: 『對受著作權保護的資訊無法出現在該網站上的指控,將威脅兩億用戶在網路上交換資訊的權益』。   自從Viacom於2007年提出訴訟以來,這兩家公司之間的交鋒戰況日益激烈。Viacom聲稱,由於用戶能夠不經允許地看到該公司的傳播內容,YouTube反而一貫縱容未經授權的流行電視劇和電影在其網站上放置,並被瀏覽數萬次,並稱Google對此視而不見,已使該公司遭受嚴重損失。   Google在上周五提交給法官的文件中宣稱,『YouTube在幫助著作內容擁有者保護其著作權方面做的已遠遠超過法律應承擔的義務』。同時,Google表示:『為了尋求上傳者和網路服務業者的合法性,Viacom反而威脅了兩億網路用戶合法交換資訊、新聞、娛樂、政治和藝術表達的方式與自由』。   Google稱所屬的YouTube乃忠實執行1998年『千禧年著作權法』(1998 Digital Millennium Copyright Act) 的要求,認為聯邦法會保護YouTube等對著作權擁有者的要求做出適當回應。但Viacom卻認為YouTube開啟了一個不良示範。

IBM Watson Health與FDA合作研究區塊鏈技術之醫療運用

  根據專利資料庫公司IFI CLAIMS公佈2016年美國專利統計報告,IBM以8,088件專利再度蟬聯冠軍,其中多著重在人工智慧(artificial intelligence)、認知運算(cognitive computing)、及雲端(cloud)等技術領域,也有健康醫療相關專利。   近期IBM Health與美國食品藥品管理局(U.S. Food and Drug Administration)展開兩年期之合作研究,透過區塊鏈技術(blockchain)以安全且去中心化的方式進行數據共享,如:交換電子病歷、臨床試驗、基因數據、甚至過去難以取得的病患行動與穿戴裝置數據及物聯網(Internet of Things)數據等。   傳統上病患的病歷資訊存放於各診療單位或醫療機構,造成資訊管理效率及互通性較低,在區塊鏈技術的架構下,有效率的將大量且多樣的醫療數據進行彙整,並藉審查追蹤紀錄以防止竄改,提升病歷數據傳輸管理的可靠性及安全性。在如此多元化的醫療數據共享環境下,有助於醫療診斷、更將能促進產業發展。   此外,過去病患穿戴裝置所測得的日常生理數據,不管在數據取得、或將該些數據應用至臨床診斷上皆存有許多問題,如今區塊鏈技術將能提高物聯網數據資訊之整合性。依調查顯示,預計有80%新創組織採用區塊鏈技術於物聯網數據管理與應用上。   其他應用商機更包括居家監控、慢性疾病管理、藥物整合(medication reconciliation)及供應鏈管理等。IBM預估,至2017年底將會有16%的健康醫療機構採用以區塊鏈技術為架構的管理工具,並預測十年內採用比例將達72%。 本文同步刊登於TIPS網站(https://www.tips.org.tw)」

英國資訊委員辦公室(ICO)發布當事人近用請求權實務準則

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2013年8月8日發布當事人近用請求權實務準則(subject access code of practice),以協助資料控制者遵循1998年資料保護法(Data Protection Act 1998,DPA)有關當事人行使近用權(access right)之規定。   根據DPA,任何資料主體都有權利接觸、查詢其被資料控制者擁有之個人資料,即當事人向資料控制者請求近用其個人資料之權利。當事人近用請求權實務準則闡明資料主體的查閱請求權、製給複製本請求權等權利,與資料控制者回應當事人近用請求權的責任,該項權利允許當事人查詢其信用卡紀錄、健康紀錄等資料,資料控制者一旦收到當事人請求,必需於40天內回覆。   ICO同時發布10項簡易步驟,以協助資料控制者衡量回應當事人近用請求權。內容包括:1.確認當事人提出之請求是否為當事人近用請求權;2.確保有足夠資訊可識別請求者的身分;3.若需要更多資訊以釐清請求者之需求,立即向請求者提出;4.若需收費,及時向請求者提出;5.確認是否有請求者需求的資訊;6.即使紀錄不正確或令人尷尬,都不要試圖更改該紀錄;7.衡量紀錄中是否含有他人資訊;8.確認是否有提供資訊之義務;9.確認能解釋資訊中的複雜名詞;10.於適當的情形下,永久保存回覆當事人資訊的副本。   這項實務準則將協助資料控制者更即時且有效地處理當事人對其資料近用請求之相關事項,同時證明資料控制者係以公開且透明之方式妥善管理其所蒐集之顧客資料。

TOP