歐盟能源使用產品環保設計指令(Directive 2005/32/EC establishing a framework for the setting of ecodesign requirements for energy-using products)自2005年施行4年後,從上(11)月20日起,已通過新的能源相關產品環保設計指令(Directive 2009/125/EC establishing a framework for the setting of ecodesign requirements for energy-related products),更新取代舊有指令。本新指令最主要特色,在於將環保設計適用範圍從「能源使用產品」擴大延伸至「能源相關產品」。
繼去(2008)年10月歐盟執委會才公告指示清單,篩選出10種在2009-2011年優先執行環保設計措施之能源使用產品類別後,其包括:空調和換氣系統、電子和燃油的加熱設備、食品備製設備、工業和實驗室鍋爐、機床、網路連結、資料處理和資料儲存設備、冷藏和冷凍設備、聲音和影像設備、變壓器及用水設備等,依歐盟新指令規定,未來不只是使用到能源的產品,其他所有能有助節約能源之產品,以及對末端使用者而言為獨立部分且其環保績效可獨立評估之服務,皆屬新指令之適用範圍。例如,蓮蓬頭與其他衛浴設備、隔離材料與雙層玻璃等。
新指令依規定將於2011年10月21日全面實施,執委會應於3年內公告優先執行之產品種類,而各會員國應於2010年11月20日前訂定國內法規。
歐盟新指令主要影響,將使更多元產品之生產者擔負起製作生態特性說明(ecological profile)之責任,且需於符合指令要求後始得於產品標示CE標示。
本文為「經濟部產業技術司科技專案成果」
韓國通訊委員會(Korea Communications Commission,KCC)主席Choi See-jung於2010年4月21日宣布韓國政府將推動一項新的「無線網路活化計畫」(comprehensive plans for wireless internet activation),預計在未來五年間投入1兆5000億韓圜,與民間共同合作發展無線網路建設,以搶佔智慧行動領域的發展先機。 因應智慧手機發展速度倍增在政治面上帶來的需求,韓國政府希望透過本計畫能將南韓建設成「智慧行動領域的發電所(powerhouse)」。並據此願景規劃了4個政策目標、10項策略方案。此四個政策目標包括:確保在智慧行動領域的全球競爭力、推動智慧手機的普及與生產應用、營造世界最高水準的無線寬頻網路、強化下世代行動科技的發展與人才培育。 KCC將組成「網路去管制推動小組」(Internet de-regulation promotion team),於4月底開始著手進行包括定位資料保護、用戶識別系統和智慧手機的金流安控等領域的法規檢視與修正工作。 KCC預測能藉此創造12,535個工作機會、促進3,648億韓圜的產值。KCC同時解釋,透過對無線網路的活化應用,支持在各層面的創新應用發展(包括醫療服務、商業活動、教育等領域),此時正是奠定韓國成為行動服務核心業務強國的時機。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
澳洲聯邦法院判決 Kazaa軟體的業者—Sherman Networks敗訴日前澳洲聯邦法院針對四家唱片公司 (包括Universal、Sony、Warner以及 Festival Mushroom)聯合控告提供檔案分享Kazaa軟體的業者—Sherman Networks一案作出判決。法官Murray Wilcox駁回原告聲稱Sherman Networks違反澳洲交易行為法(Trade Practices Act)以及Sherman Networks本身有從事著作權侵害的主張。但是,法官Wilcox指出Sherman Networks授權使用者侵害原告的著作權,並有鼓勵年輕人侵害著作權的情況。Sherman Networks在Kazaa網站的網頁中放置批評反對P2P軟體的唱片公司的標語--Join the Revolution,以及贊助攻擊唱片公司的文宣--Kazaa Revolution。這些標語、文宣並未明白地鼓吹使用者分享檔案,但是這會對於青少年認為以漠視唱片公司之著作權的方式來挑戰唱片公司是一件很「酷」的事情,而Kazaa的使用者多數是青少年。 法官 Wilcox判決被告必須支付90%的訴訟費用,並指出在Sherman Networks符合下列條件之一的情況下,Kazaa可以繼續營運: 1. 必須在現有的以及未來的版本中納入強制性關鍵字過濾技術 (non optional key word filter technology),並且竭盡所能地要求既有使用者將版本更新至含有此技術的版本。 2.Altnet搜尋軟體,又稱之為TopSearch,只能提供未有侵害到他人著作權之作品的清單。 除此之外,法官 Wilcox亦為本案的上訴程序設下二個條件,第一個是上訴時間最快為明年2月,上訴法院為Full Court,第二個是Kazza軟體的修改須取得法院的認可或是唱片公司的同意。
日本公平交易委員會公布資料市場競爭政策檢討會報告書,提出建構資料市場公平競爭環境之政策建議日本公平交易委員會(公正取引委員会)於2021年6月25日發布關於資料市場競爭政策檢討會(データ市場に係る競争政策に関する検討会)報告書。所謂資料市場,不僅指資料從產出、蒐集、整理儲存(蓄積)、加工、分析到利用等各階段的交易,尚包含向終端使用者提供相關商品或服務。其類型包含企業經營所產出的「產業資料」(産業データ),以及與個人相關的「個人資料」(personal data,原文為パーソナルデータ)。近年來,數位平台型業者參與資料市場、活用資料經營相關商業活動的情形漸增。同時,資料不同於傳統交易客體,具備以下特徵:(1)技術上容易複製;(2)無法建立排他性佔有;(3)需透過累積與解析方能創造其價值;(4)可藉由累積使用資料持續優化產品機能。而累積大量資料的數位平台業者,亦可能藉此形成獨占、寡占、排除其他競爭者等。 基此,本報告書針對此一競爭秩序現況,提出以下建議: 建構鼓勵新業者加入資料市場的機制:應充分考量各潛在參與者之需求,同時留意利用資料之事業退出市場經營時,不應對使用該事業服務的個人造成不利益。 針對產出資料之行為建立獎勵機制,同時促進業界自由且易於取用資料。 區分各企業經營共通事項之協調領域、以及企業間各自專業化經營之競爭領域。就前者提供共通性指引與開放行政保有資料供利用,對後者則須管制妨害公平競爭之行為。 確保資料可攜性,與不同系統間的互通性(interoperability,原文為インターオペラビリティ),讓使用者容易轉換其所利用的平台服務。 優化關於個資利用的說明義務內容,尤其針對平台在不知情下蒐集資料的情形,應額外規範業者採取相應配套措施,避免造成當事人不利益。 就數位平台形成的市場寡占與資料獨占蒐集問題,可考量採取令其他業者能公平取用資料之措施。