由英國政府所資助成立的一項計畫,希望透過開放原始碼廠商目錄及程式碼資料庫的建立等措施,加速公家單位對開放原始碼軟體的採用。這項名為「開放原始碼學院」( Open Source Academy )的計畫,是由副首相辦公室( Office of the Deputy Prime Minister )的電子創新投資計畫所贊助,預計在本月內將正式宣佈。 參與該計畫的開放原始碼協會( Open Source Consortium )執行總監表示,英國的公家機關在開放原始碼的採用上落後於歐洲各國,而這項計畫將改變目前的現況。地方政府已經可以透過網站開始分享程式碼,例如「地方政府軟體協會」( Local Authority Software Consortium )的網站。這項計畫裡的其他專案還包括了政府機構的入口網站計畫,可藉以尋找開放原始碼供應商的資訊;以及開放原始碼顧問的專業鑑定模式。
企業蓋廠房 可造林減抵二氧化碳排放量企業界興建廠房未來若排放的二氧化碳過高,可以透過在國內外協助造林等方式來改善。 農委會日前組成農業森林議題工作小組,積極蒐集國內外相關資料,推廣植樹造林對溫室氣體減量策略及作法,並調查出更精確的碳吸存數據,作為未來碳交易等機制所需的基本資料。其初步估算出每種植一公頃森林可淨吸收七公噸二氧化碳的減量模式。未來將可配合碳交易機制,銷售給需進行二氧化碳減量的業者,農委會已先選定台糖進行合作,未來將推廣至業者的平地造林。 農委會表示,目前的碳交易模式分為兩種,一種是進行國內外的造林,來換取本國二氧化碳的排放量,像是美、日等國,即在中國大陸廣泛種植樹木來換取更多的業者投資,或是在本國境內種植更多的林木,這種交易屬於碳交易。第二種是在本國境內進行溫室氣體的減量,再將減量超過的部分賣給其他國家,亦即清潔費的交易,也屬於廣義的碳交易行為。 為推動我國建立碳交易機制,農委會也已著手進行造林的碳吸存研究,農委會表示,未來碳交易機制建立後,業者興建廠房若排放的二氧化碳超過標準,可以透過協助國內外造林,或付出造林費用給協助造林的單位。在建立交易模式後,未來若企業界興建一座廠房所造成的二氧化碳排放量超過七公噸,即可透過支付一公頃造林費用的方式,達到平衡的效果。
FCC執行局建議駁回有線電視業者對電信業者之申訴由於美國之主要電信業者與有線電視業者紛紛推出語音、數據與影音三合一服務(triple play),彼此之間的競爭也日益激烈。為搶奪市場,電信業者與有線電視業者分別向美國聯邦通訊傳播委員會(FCC)提出申訴,指競爭對手以不公平方式阻擋客戶轉換服務提供業者。如2008年2月間,Comcast、Time Warner 等有線電視業者向FCC申訴,Verizon 及其他既有電信業者在消費者申請電信號碼可攜服務過程中,以違反通訊法(the Communications Act of 1934)規定方式,利用消費者之個人資料進行「客戶忠誠度行銷」(Customer retention marketing)。電信業者在3月間亦向FCC申訴,有線電視業者拒絕接受競爭對手代替消費者申請取消原訂服務,而要求消費者親自申請,造成消費者轉換服務提供業者之困擾,不利電信業者爭取客戶轉向訂閱其他業者之影音服務。 針對有線電視業者所提出之申訴,FCC執行局(the Enforcement Bureau)認為,就法條解釋觀之,電信業者此一利用消費者資料的方式並未違反通訊法之規定,故建議FCC駁回有線電視業者之申訴。然而,有鑑於電信業者與有線電視業者之間競爭逐漸白熱化,執行局建議FCC就「客戶忠誠度行銷」行為涉及之客戶資料使用與市場競爭利益發佈「初步立法公告」(Notice of Proposed Rulemaking, NPRM),徵詢各方意見,希望建立能一體適用於各個不同平台之規範,以因應跨業競爭問題。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。 德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。 例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。