本文為「經濟部產業技術司科技專案成果」
英國財政部於2018年10月29日宣布將不再採用二代民間融資(Private Finance 2,PF2)。 PF2是英國自1992年推行的民間融資提案(Private Finance Initiative, PFI)的進階版。PFI屬於「公私協力」(Public Private Partnerships)範疇,其概念為政府運用民間機構的管理能力及商業的專業知識,和民間機構簽訂PFI契約,先由民間機構興建、營運公共建設,政府再向民間機構購買該公共建設之公共服務。政府在民間機構營運公共建設後,依據雙方契約所訂之評估指標及規範,檢視民間機構之服務品質有無符合約定,再予以付款,倘未達到績效指標或資產無法提供服務時,則有扣款機制。 PFI在英國運作20多年,雖確實有效減輕政府財政負擔,但也有長期計劃缺乏彈性、私部門獲利太多、採購耗時等缺點。因此,英國於2011年對PFI進行改革,推出PF2。PF2有PFI制度及基本架構,但讓政府參股投入部分資金,成為投資者之一;簡化案件行政程序,從計畫啟動到選出最優申請人,原則不得超過18個月;要求民間機構披露公開資產報酬,提升透明度等。 PFI和PF2契約雖然已用於資助學校、醫院和其他基礎設施的建設,但此二模式的使用率近來已顯著下降,此可從英國雖修正PFI推出PF2,但PF2迄今僅使用了六次,以及目前的PFI及PF2契約,有86%是在2010年前簽立可證。此外,採用PFI或PF2契約後,如發生契約提前終止情形,機關須依約買回公共建設,導致仍須支付高額費用,凸顯PFI或PF2契約難以調整的不靈活性而飽受批評。又,預算責任辦公室(Office of Budget Responsibility)亦表示民間融資提案(private finance initiative)對政府的財政具有風險。 英國財政部已聽取前述各個關注,並且決定未來的施政規劃不再採用PF2 ,但財政部同時表示不會終止現有的PFI和PF2契約,會履行承諾完成履約,因為契約終止所生之高額補償,將使PFI或PF2不具「公帑節省價值」(Value for Money),故政府仍將繼續致力提高現有PFI契約的價值。 PFI起源於英國,此模式受不少國家效尤。而今英國宣布不再採用PFI的進階模式-PF2,此政策對PFI有無影響,以及英國政府未來是否會再規劃新的採購模式或公私協力措施以建設公共服務設施,相信將受到各國的關注。
美國國家寬頻計畫簡介 英國政府將設立網路兒童保護中心英國內閣辦公室指出,英國政府將設立網路兒童保護中心以協助警方與孩童保護機構,該中心主要偵查目標為利用網際網路散佈違法之兒童影像或「打扮」兒童的戀童癖人士。其宗旨在減少利用網路協助虐童的行為,而對孩童、家庭與社會產生傷害的情況。 該中心未來將隸屬於 2006 年 4 月 1 日成立之「嚴重組織犯罪局」( Serious Organized Agency = SOCA )管轄,並於該局成立之同時開始運作,由專責的警察人員協同孩童保護,並由網路工業專家負責業務之執行。
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。