墨西哥的聯邦資料保護法在二0一0年四月經墨西哥國會通過後,已於同年七月六日生效。這個新法旨在保護個人的隱私權並強化個人對自身資訊的掌控。與我國新近通過的個人資料保護法相同,墨西哥的這個新法所規範的範圍也包括了私部門對個人資料的蒐集、處理與利用。
在新法通過之後,原本的聯邦公共資訊近用機構(Federal Institute for Access to Public Information),亦擴張執掌並更名為聯邦公共資料近用及資料保護機構(Federal Institute of Access to Information and Data Protection)。在新制下,該機構將在原有負責事務外,另肩負起監督私部門就個人資料保護的相關事務。
此外,該法設計了一個雙重的監督機制:當資料的蒐集、處理或利用人,也就是所謂的資料控制者(Data Controller)出現可能違反聯邦資料保護法的狀況,將先由各相關部門的主管機關,例如主管經濟事務的機關或主管交通事務的機關來介入處理,而非由聯邦公共資料近用及資料保護機構立刻介入。
FCC經過討論與投票,正式發佈命令將電力線寬頻上網服務分類為跨州資訊服務(interstate information service),而非電信服務,其他寬頻上網科技包括DSL、有線電纜線數據機寬頻上網亦被FCC分類為資訊服務。 過去幾年來,FCC一直大力支持電力線寬頻上網服務,期望電力線寬頻上網服務可以進入寬頻服務市場,與DSL和有線電視纜線數據機寬頻上網服務競爭,以增加寬頻服務市場之競爭,提高美國之寬頻普及率。而就此次所發佈之命令,FCC認為,將電力線寬頻上網分類為資訊服務將可使電力線寬頻上網服務受到較低的管制,有助於達成隨時隨地提供所有美國民眾寬頻接取之目標。其次,FCC在數位匯流時代之管制乃是期望能對於各種不同技術之寬頻接取平台給予一致的管制措施,並且對於相同之服務採取相同的管制方式。基於上述原因,FCC此次將電力線寬頻上網分類為資訊服務並不讓人感到意外。 FCC主席Kevin J. Martin進一步在其聲明中表示,雖然目前電力線寬頻上網人口並不多,然在2005年其成長率卻將近200%,顯見電力線寬頻上網服務之市場潛力不容忽視,將可幫助達成美國總統定下於2007年底前隨時隨地提供全國民眾寬頻網路接取之目標。
日本公布「資料與競爭政策檢討會報告書」並探討資料收集利用違反《獨占禁止法》行為近年來,受到物聯網和人工智慧技術高度發展影響,大數據的重要性逐漸提昇。為避免資料不當收集和資料被不當佔據等可能妨礙競爭之行為,以利業者透過資料收集、累積和分析等方式,創造出新的產業價值,日本公平交易委員會於競爭政策研究中心設置「資料與競爭政策檢討會」,自2017年1月至6月間舉辦數次檢討會,並於2017年6月6日公布《資料與競爭政策檢討會報告書》。該書一共5章,內容為第1章檢討背景,第2章回顧資料環境變化與利用現狀,第3章檢討現今競爭政策及《獨占禁止法》,第4章資料收集、利用相關行為,以及第5章企業結合審查等與資料利用相關之事項。 報告書指出,業者不當收集資料和不當佔據資料等行為,均有適用《獨占禁止法》之可能。前者係指具有優勢地位的業者,利用關係要求有業務往來的企業提供資料等行為,如原本只需要性別和年齡資訊,卻額外要求對方提供住所、電話等訊息;後者則係指業者利用不正當方法與顧客聯繫,排除其他競爭者等行為,如排他性交易、拒絕交易、差別待遇等。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
車聯網「V2V」簡介V2V(Vehicle-to-vehicle)通訊使用短程無線通訊技術(dedicated short-range radio communication, DSRC)交換周邊車輛速度與位置等相關訊息,並協助採取相對應措施,如警告駕駛前方車輛正在剎車,或於駕駛視線死角處有其他車輛正高速接近。因此,使用V2V通訊技術可有效避免車輛間相互碰撞、紓解交通壅塞之問題,對環保方面亦有所助益,然而,此技術於多數車輛間得以相互通訊時,方能最大化其效益。 V2V通訊技術可以每秒約10次之頻率,使車輛間相互廣播並接收全面之訊息,從而在一定距離範圍內360度「感知」其他車輛並與其他車輛進行「對話」。若將搭載V2V通訊技術之車輛配備適當的軟體或安全設備,車輛間即可利用接收到的有效訊息來避免潛在的事故威脅。V2V通訊技術可偵測出超過300公尺範圍之交通情況,包括因交通、地形或天氣影響而受人類駕駛忽略之危險,較傳統使用雷達系統或攝影鏡頭進行偵測之方式更為精準。 無論是機車、汽車、卡車及公車皆可使用V2V通訊技術以提升車輛安全系統的性能,車輛間之連接技術將成為協助駕駛發現潛在交通危機的輔助工具,有助於顯著減少每年因交通事故喪生之人數。