墨西哥的聯邦資料保護法在二0一0年四月經墨西哥國會通過後,已於同年七月六日生效。這個新法旨在保護個人的隱私權並強化個人對自身資訊的掌控。與我國新近通過的個人資料保護法相同,墨西哥的這個新法所規範的範圍也包括了私部門對個人資料的蒐集、處理與利用。
在新法通過之後,原本的聯邦公共資訊近用機構(Federal Institute for Access to Public Information),亦擴張執掌並更名為聯邦公共資料近用及資料保護機構(Federal Institute of Access to Information and Data Protection)。在新制下,該機構將在原有負責事務外,另肩負起監督私部門就個人資料保護的相關事務。
此外,該法設計了一個雙重的監督機制:當資料的蒐集、處理或利用人,也就是所謂的資料控制者(Data Controller)出現可能違反聯邦資料保護法的狀況,將先由各相關部門的主管機關,例如主管經濟事務的機關或主管交通事務的機關來介入處理,而非由聯邦公共資料近用及資料保護機構立刻介入。
網路社群網站 MySpace 日前獲得 Gracenote 授權一項影音識別技術,未來將透過此一技術確認其會員上傳的影音檔案是否經過合法授權,一旦判定其傳送之音樂未經授權,則將阻斷其上傳,並將對經常違規之使用者進行刪除帳號的制裁。 MySpace 此舉是來自電影及唱片公司對於線上流行音樂網站涉及違反著作權法,侵害其歌手權利之壓力。無獨有偶, Goolge 以 16 億美元的股票收購同為熱門影音網站的 YouTube 後,亦刪除三萬個未經合法授權使用的影音檔案,以符合著作權法保護之要求。播放 YouTube 「每日一笑」( The Daily Show )的美國電視頻道 Comedy Central 亦被要求移除所有排列在節目單上的短片。 另外, Apple 的 iTunes 面臨此一問題,則是採用 Gracenote 的影音識別技術來辨識確認從 CD 輸入 iTune 系統的音樂是否為合法。
歐盟有機農民團體反對為新植物育種技術(NPBT)訂定新法歐洲法院(European Court of Justice, ECJ)於2018年7月作出裁定,利用新植物育種技術(New Plant Breeding Techniques , NPBT)誘變(mutagenesis)所得之作物亦屬於基因改造生物(genetically modified organism , GMO),因此須適用歐盟的基因改造生物管制指令(GMO Directive 2001/18/EC)。 對於不涉及外源基因添加的新植物育種技術,是否應視為基因改造生物,並需獨立於添加外源基因之基因改造生物另制定框架,對此引發了強烈的討論,科學界/農民跟環保團體/有機農法之農民之間抱持著相反的態度。 科學界/農民認為,歐洲法院是以近20年前所通過的基因改造生物管制指令所做出的解釋,並未考量該技術進步所造成的差異,其認為新植物育種技術之誘變與自然產生的誘變無實質差異,而需要就新植物育種技術另外進行立法。 歐盟有機農民運動聯盟(IFOAM EU)於2019年7月24日發出聲明,認為若將新植物育種技術排除於歐盟基因改造生物管制指令之適用,將造成有機農業與傳統非基因改造生物之農民無法於農作物生產過程中排除基因改造生物之存在,最終將使得消費者、農民、食品加工者失去選擇非基因改造生物之選擇自由,故樂見歐洲法院之見解。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
何謂不實施專利實體(Non-Practicing Entity,NPE)?所謂NPE依據現行學術界對於NPE的內涵認知,認為NPE係指不從事任何商品生產,亦不從事任何研發工作者。而在現行NPE的運作態樣上,其可包含兩種類型,其一,為大學和研究機構(例如:公、私立實驗室),其主要係由校內教職員或研究人員進行基礎性研究,並將研究成果授權予其他個人或組織來運用,其本身並不從事任何商品生產者;其二,係由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權本質上的排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。後者,英文稱其為『Patent Troll』,中文可譯為『專利巨人』、『專利蟑螂』、『專利流氓』、『專利地痞』或『專利恐怖分子』等。其主要特徵有三項,首先,此類NPE係藉由專利取得的方式,向潛在或可能的專利侵權者(alleged infringers)收取專利授權金;第二,此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;第三,此類NPE投機性地等待商品製造者(industry participants)在投入不可回復鉅額投資後,始對該商品製造者行使專利侵權主張。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。