台灣蕨類資源相當豐富,為保存台灣原生蕨類植物資源,我國政府於和平鄉鳥石坑規劃成立「蕨類園」,共蒐集台灣原生種蕨類 32科200多種,經過4年培育,蕨類生長茂盛,是很好的科學研究與生活旅遊教材。根據研究,台灣蕨類共37科、約620種,「蕨類園」的目標希望蒐集300至400種台灣中低海拔原生蕨類,做為種源保存、學術研究與解說教育之用。
蕨類是台灣常見的植物之一,在居家圍牆裂縫或庭園造景的石頭縫裡,就可觀察到鱗蓋鳳尾蕨、劍葉鳳尾蕨、細毛小毛蕨和腎蕨等蕨類,但是大多數民眾對蕨類卻非常陌生,因此該中心擬將蕨類納入社區生態與環境教育介紹的主題,教導參觀者如何欣賞各種蕨類之美。
台灣蕨類資源到底有多豐富?根據形容,台灣蕨類比整個歐洲還多,面績是台灣好幾倍大、且非常喜歡蕨類的紐西蘭,也只有 100多種。在單位面積分布上,台灣堪稱蕨類植物的天堂。因此 , 台灣「蕨類園」之成立將會是台灣生態保育的一個重要里程碑 。
本文為「經濟部產業技術司科技專案成果」
過去高科技企業或生化公司的研發專案,公司經常認為專案已成熟,可認列為無形資產,以分成幾年攤銷,不致影響損益;但會計師卻可能認為,其無技術可行性或者無使用和出售可能,仍主張認列為費用。 第三十七號會計公報 「無形資產的會計處理」 新近出爐,就無形資產清楚給予定義,並解釋如何進行會計處理與鑑價。其中最特別的是,第三十七號公報首次區分「研究」和「發展」階段的不同,發展階段有可能資本化。資本化最大的影響是,支出可以列為資產,不會影響損益,研究型企業的資產負債、損益表也將更為精準。 舉例來說,生化、製藥業者因研究期很長,所有研發期間的投入,過去都須列為費用,導致獲利被明顯稀釋;未來根據三十七號公報,企業專案計畫接近商品化的發展階段,就可以資本化,此時的損益表上費用項目,就不會那麼高, 因此,「發展」階段可列為資產,有助鼓勵科技業者增加研究發展經費的投入。 至於企業併購所產生的購買價格和被併公司淨值之間的溢價,過去通常以商譽處理,不過在 37 號公報上路後,會計師建議不應再把溢價直接當作商譽來處理,此乃因第 37 號公報所稱的無形資產,並不包含商譽,且必須具有「個別可辨認性」。因此,併購溢價應該區分為商譽和無形資產兩者,其後續評價對企業也較為有利。 此外會計業者也表示,促產條例中對研發投抵的認列,有可能受到三十七號公報的影響,需要做調整,這部分有待財政部進ㄧ步規範清楚。
澳洲國家交通委員會發布管制政府近用C-ITS和自駕車資料政策文件,提出政府近用自駕車蒐集資料規範原則2019年8月12日澳洲國家交通委員會(NTC)提出「管制政府近用C-ITS和自駕車資料(Regulating government access to C-ITS and automated vehicle data)」政策文件,探討政府使用C-ITS與自駕車資料(以下簡稱資料)所可能產生的隱私議題,並提出法律規範與標準設計原則應如下: 應平衡政府近用資料與隱私保護措施,以合理限制蒐集、使用及揭露資料。 應與現行以及新興國內外隱私與資料近用框架一致,並應進行告知。 應將資料近用權利與隱私保障納入立法中。 應以包容性與科技中立用語定義資料。 應使政府管理資料措施與現行個資保護目的協調一致。 應具體指明資料涵蓋內容、使用目的與限制使用對象,並減少資料被執法單位或經法院授權取得之阻礙。 應使用易懂之語言知會使用者關於政府蒐集、使用與揭露以及資料的重要性。 認知到告知同意是重要的,但同時應提供政府於取得同意不可行時,平衡個人隱私期待之各種可能途徑。 認知到不可逆的去識別化資料在許多情況下的困難度。 支持資料安全保護。 定期檢查資料隱私保護狀態與措施。 以上這些原則將會引導NTC發展自駕車資料規範與國家智慧運輸系統框架,NTC並將於2019年內提出更進一步規劃相關工作之範疇與時間點。
品牌商標命名之實踐與提醒─從杜邦分析要件判斷商標混淆誤認之關鍵陽明交通大學於2025年7月11日,透過律師向美國商標審判及上訴委員會(The Trademark Trial and Appeal Board,簡稱TTAB)提出答辯主張,主張其商標(縮寫為NYCU)並未和紐約大學的商標(縮寫為NYU)有混淆誤認之虞,以下將以此案為例,說明實務上如何運用DuPont Factors(又稱杜邦分析要件)判斷混淆誤認,品牌商標命名、註冊等階段時應注意的風險和實務上可行的因應措施。 杜邦分析要件係源於1973年的E.I. DuPont de Nemours & Co. v. Celanese Corp.案,用13個判斷分析要件檢視是否有商標混淆誤認的情形,是美國審查實務,或者相關商標爭議判斷,最常引用的判斷標準,並視個案情形引用對應要件。 本案陽明交通大學提出答辯主張包括:NYU與NYCU字母、意義等整體印象不同(第1項);NYU提供美國正式教育學位課程,而NYCU僅限於台灣課程,未提供美國正式學位,雙方提供不同之教育服務(第2項);NYCU僅有限參與國際會議並未於美國招生,通路未重疊,且消費族群均為高知識與謹慎決策者(第3~4項);無任何實際混淆的證據(第7項);NYCU長期使用該縮寫於國內外學術交流與排名中,未發生混淆而顯示兩者商標可共存(第8項);NYCU合法註冊校名之縮寫,具有使用與排他性權利,無混淆意圖亦未仿冒(第11項);雙方市場截然不同,混淆風險極低(第12項),以及若不准NYCU使用將造成教育機構正常名稱縮寫受限,牽涉公共利益、學術發展與合理使用(第13項)等。 品牌企業或學研法人不論從命名、商標註冊階段,甚至到商標異議、撤銷、侵權爭議等判斷,不可忽視商標之混淆誤認風險,將可能被迫改名、下架商品或服務調整行銷素材、重啟品牌命名流程等,耗費人力、時間或經費。因此,務必完善品牌商標管理機制,確保能掌握混淆誤認之判斷原則、階段性評估檢核,以降低品牌撞名或近似他人註冊商標之情形,進而鞏固品牌價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國政府提交予國會「人工智慧監管規範政策報告」英國政府由數位文化媒體與體育大臣(Secretary of State for Digital, Culture, Media and Sport)與商業能源與工業策略大臣(Secretary of State for Business, Energy and Industrial Strategy)代表,於2022年7月18日提交予國會一份「人工智慧監管規範政策報告」(AI Regulation Policy Paper)。內容除定義「人工智慧」(Artificial Intelligence)外,並說明未來政府建立監管框架的方針與內涵。 在定義方面,英國政府認為人工智慧依據具體領域、部門之技術跟案例有不同特徵。但在監管層面上,人工智慧產物則主要包含以下兩大「關鍵特徵」,造成現有法規可能不完全適用情形: (1)具有「適應性」,擅於以人類難以辨識的意圖或邏輯學習並歸納反饋,因此應對其學習方式與內容進行剖析,避免安全與隱私問題。 (2)具有「自主性」,擅於自動化複雜的認知任務,在動態的狀況下持續判斷並決策,因此應對其決策的原理原則進行剖析,避免風險控制與責任分配問題。 在新監管框架的方針方面,英國政府期望所提出的監管框架依循下列方針: (1)針對技術應用的具體情況設計,允許監管機構根據其特定領域或部門制定和發展更詳細的人工智慧定義,藉以在維持監管目標確定與規範連貫性的同時,仍然能實現靈活性。 (2)主要針對具有真實、可識別與不可接受的風險水準的人工智慧應用進行規範,以避免範圍過大扼殺創新。 (3)制定具有連貫性的跨領域、跨部門原則,確保人工智慧生態系統簡單、清晰、可預測且穩定。 (4)要求監管機構考量更寬鬆的選擇,以指導和產業自願性措施為主。 在跨領域、跨部門原則方面,英國政府則建議所有針對人工智慧的監管遵循六個總體性原則,以保障規範連貫性與精簡程度。這六個原則是基於經濟合作暨發展組織(OECD)的相關原則,並證明了英國對此些原則的承諾: 1.確保人工智慧技術是以安全的方式使用 2.確保人工智慧是技術上安全的並按設計運行 3.確保人工智慧具有適當的透明性與可解釋性 4.闡述何謂公平及其實施內涵並將對公平的考量寫入人工智慧系統 5.規範人工智慧治理中法律主體的責任 6.釋明救濟途徑 除了「人工智慧監管政策說明」外,英國政府也發布了「人工智慧行動計畫」(AI Action Plan)文件,彙整了為推動英國「國家人工智慧策略」(National AI Strategy)而施行的相關行動。前述計畫中亦指出,今年底英國政府將發布人工智慧治理白皮書並辦理相關公聽會。