台灣蕨類資源相當豐富,為保存台灣原生蕨類植物資源,我國政府於和平鄉鳥石坑規劃成立「蕨類園」,共蒐集台灣原生種蕨類 32科200多種,經過4年培育,蕨類生長茂盛,是很好的科學研究與生活旅遊教材。根據研究,台灣蕨類共37科、約620種,「蕨類園」的目標希望蒐集300至400種台灣中低海拔原生蕨類,做為種源保存、學術研究與解說教育之用。
蕨類是台灣常見的植物之一,在居家圍牆裂縫或庭園造景的石頭縫裡,就可觀察到鱗蓋鳳尾蕨、劍葉鳳尾蕨、細毛小毛蕨和腎蕨等蕨類,但是大多數民眾對蕨類卻非常陌生,因此該中心擬將蕨類納入社區生態與環境教育介紹的主題,教導參觀者如何欣賞各種蕨類之美。
台灣蕨類資源到底有多豐富?根據形容,台灣蕨類比整個歐洲還多,面績是台灣好幾倍大、且非常喜歡蕨類的紐西蘭,也只有 100多種。在單位面積分布上,台灣堪稱蕨類植物的天堂。因此 , 台灣「蕨類園」之成立將會是台灣生態保育的一個重要里程碑 。
本文為「經濟部產業技術司科技專案成果」
一直以來負責政府部門資訊軟體採購的中信局,均要求廠商出示所謂 " 原廠証明 ",但是自由軟體並無法取得 " 原廠証明 ",以致難以打入公部門。今年中信局第一季發佈的政府採購需求中,首度在個人電腦部份列出具備 Linux 相容測試以及中文化認證的產品。未來要做政府生意的非 Windows-based 桌面電腦軟硬體廠商,都必須取得 Linux 相容測試認證。這是政府為了擴大 Linux 軟硬體使用而推動 Linux 相容測試,第一次明文要求, Linux-based PC 必須要具備 Linux 相容性認證。Linux 相容認證列入 IT 產品採購規格中,將因政府需求的驅動而有助於刺激國內廠商參與測試、取得認證的意願,使推動 Linux 的力量更為聚焦。 眾多 Linux 版本 OS、應用彼此相容、以及中文化不足,是國內企業使用與佈署特別是 Linux 桌面軟體造成障礙。三年前工業局推動成立 Linux 相容測試中心,希望能降低 Linux 版本相容性問題,並在今年開始推動中文化認證。 過去 Linux 相容測試免費提供廠商產品測試服務,並沒有於政府需求銜接,導致在促進 Linux 產品取得認證過於發散,此次中信局僅在個人電腦部份列出需求,也有助於收斂投測產品種類。 Linux 相容測試中心,也將在本月頒發第一批「 Linux 軟硬體相容性基本驗證規範」及「基本中文化實用性驗證」的產品。 Linux 相容測試中心交由台北市電腦公會(TCA)負責的 Linux 促進會執行
澳洲政府發布國家區塊鏈路線圖,建立澳洲區塊鏈技術發展策略與目標澳洲產業創新科技部(Department of Industry, Innovation and Science)於2020年2月7日發布「國家區塊鏈路線圖:向區塊鏈賦能之未來前進(National Blockchain Roadmap: Progressing towards a blockchain-empowered future)」政策文件。此路線圖為澳洲政府為彰顯其對區塊鏈技術之重視,並認知到區塊鏈與其他科技結合後將可進一步增進工作機會、促進經濟成長、減少商業成本與提升整體生產力,因此提出之區塊鏈發展方向規劃。 本路線圖文件指出,為實現區塊鏈技術,澳洲政府將於三個關鍵領域建立相關策略:一、建立有效且合理的規範與標準;二、建立可驅動創新之技術與能力;以及三、促進國際投資與合作。 路線圖文件並針對2020至2025年之區塊鏈發展進行規劃,相關措施包含: 重新命名國家區塊鏈諮詢委員會為國家區塊鏈路線圖推動委員會,並使其具有監督路線圖推動之職權。 建立由產業、研究團隊以及政府合作之團隊,以分析未來可能之應用案例。 對目前使用案例進行經濟分析與研究可能措施選項。 建立與連結政府端區塊鏈使用者,以促進學習交流與進一步應用。 進行國際研究以辨識出其他國家中適合學習做為政府服務之實際案例。 與區塊鏈服務提供商密切合作進行商業創新研究,以提出可供實際案例運用之解決方案。 確保區塊鏈發展涵蓋於整體國家策略中以促進數位科技能力管理。 使產業與教育機構合作發展關於區塊鏈資格技能之共同框架與課程內容。 為澳洲區塊鏈新創公司提出能力發展協助計畫,使其可向全球擴張並與支持合格企業。 引導外資投資以促進澳洲區塊鏈生態系建立。 引導既有雙邊協議進行區塊鏈前端計畫之合作與發展。 增加政府部門合作以確保澳洲企業可與發展中之新興數位貿易基礎設施進行連結等。 澳洲政府期待透過推動本路線圖與結合先前提出之AI路線圖政策,達成於2030年前成為數位經濟國家之目標。
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。
世界經濟論壇發布「融合實境中的共同承諾:促進未來網路治理」白皮書世界經濟論壇(World Economic Forum, WEF)2024年11月19日發布「融合實境中的共同承諾:促進未來網路治理」(Shared Commitments in a Blended Reality: Advancing Governance in the Future Internet)白皮書,說明進入虛實整合的融合實境(Blended Reality, BR)時代,需取得社會共識並進行治理,透過倡導以人為本的網路治理框架並促進多方參與,以平衡技術創新與社會期待之間的差距,使網際網路持續進步。 融合實境是由延展實境(Extended Reality)、AI、物聯網(Internet of Things)、6G網路、區塊鏈等新興技術驅動而形成,融合數位與實體。現行網路治理因橫跨不同司法管轄區而有分散與破碎問題,且技術標準間之矛盾或規範落差阻礙全球協作,恐不利因應BR發展所帶來之挑戰。因此,WEF藉此白皮書提出下列8項核心承諾與目標,強調安全、包容及可持續性之發展,期望作為全球共同之治理承諾以應對挑戰: 1. 尊重人權:保障數位與實體空間中的基本人權,促進個人尊嚴、自主性及包容性。 2. 問責:明確各方責任,建立透明有效的問題解決機制。 3. 協作安全(collaborative safety):透過多方利害關係人協作加強對弱勢群體的保護並制定安全標準。 4. 資產所有權:應確保數位和實體資產的來源、真實性及相關權利保護。 5. 負責任的資料治理:透過教育與研究等方式,促進學術、政府、企業與社會間之知識共享,並建立隱私及安全機制,保障資料治理。 6. 教育與研究:支持普及科技教育和推動開放式研究,促進全球科技共享。 7. 無障礙(accessibility):改善基礎設施及多元工具的發展,以確保科技在社會各層面之平等使用與普及化。 8. 永續性:平衡經濟效益與社會及環境影響,建立長期永續發展模式。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}