加拿大財政委員會主席克萊門(Tony Clement),概述了加拿大政府對於保護加拿大公民隱私的步驟,並詳細的列出政府機關官員對於隱私保護違犯行為的案件量。 政府對於看待人民隱私保護這件事情是非常重視的,特別是如何妥當的處理具敏感性個人資料的這個部分,我們認為是關鍵性的重點」部長克萊門表示。 人力資源及技能發展部部長芬蕾(Diane Finley)說:「我們對於所有違犯事件都會非常認真的面對,任何錯誤都是不能被接受的,為了預防和對抗將來可能發生的事故,我已經下達指示要求徹查本部門下所有員工處理個人資料的作業程序、更新網路防護機制以禁止入侵,機關人員需接受強制性的教育訓練,學習如何處理敏感性和個人資訊。我們政府一直持續推動保護個人資訊的安全維護措施、強化隱私保護、當有任何事故發生時,會執行嚴格的通報機制及規劃完善的應變措施」。 自2006年以來,政府所採取加強隱私保護,並實行嚴格通報機制的新興措施包括: 1.向隱私權委員會通報隱私侵害事故,並採取迅速措施進行解決 2.完成隱私衝擊評估,以建置新的或實質性修正相關措施與行動 3.徹底落實隱私權保護措施命令,要求所有聯邦政府機構必須建置解決侵犯隱私事件的應變計畫 4.制訂隱私權保護政策,要求所有聯邦政府機構,若發現有任何可能侵害加拿大公民隱私的行為時,必須立即通知隱私權委員會辦公室 5.為因應各類新型侵害隱私權之事件,應持續建立新的應變指引,協助各機構有統一的辨識標準和阻止措施。 「在最新年度報告中,隱私權委員會指出,退伍軍人事務局已經明確的公告隱私權保護是現階段非常重要的業務項目,該局正積極建立相關維護措施和計畫。」布萊尼部長表示。 「我們將繼續努力,與隱私權委員會辦公室密切合作,確保加拿大公民的隱私權保護」,部長克萊門回應道
美國科羅拉多州通過《人工智慧消費者保護法》2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。
加拿大修正專利法,於2019年正式生效2018年12月1日,加拿大智慧財產局公告了新專利法,並立2018年12月1日起至31日為公衆諮詢期,該法於2019年正式生效。 本次專利法修改多屬鬆綁權利人之期日限制,包括: 恢復優先權主張:在新專利法上路後,在非故意錯過了12個月的優先權期限的情況下,可允許將優先權期限延長至14個月; 更容易取得申請日:針對直接申請加拿大專利而非透過專利合作條約(Patent Cooperation Treaty,PCT)的申請案,即使尚未繳納申請費,或是相關申請文件非英文和法文,一樣可以取得申請日; 允許補交在主張優先權申請遺漏的內容; 獲核准通知後提出修改作業的程序順暢化; 採用電子送件,排序列表不會被徵收超頁費; 對特定的錯誤有更明確的修正截止日:移除因「行政作業」上疏失而提出修正請求的規定,在其他規定上增加了明確的截止日; 採PCT途徑進入國家階段已經不再有42個月的期限; 維持費用制度較為複雜,錯過實質審查期限影響也較嚴重; 如果已遞交之申請案並非英文或法文版本,那未來修改申請案必須要能自合理的從原本外語版本中合理推論而出; 需提出優先權證明文件:申請人必須向加拿大專利局遞交每一件先前申請的優先權證明文件,特殊情況下才能豁免提交; 部分申請期限變短:新專利制度縮短申請人部分申請程序及時間,例如申請實體審查期限從申請日起5年內降為4年等。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。