2017年美國統一法律委員會(Uniform Law Commission, ULC)於2017年9月公布「統一虛擬貨幣事業監管法」(Uniform Regulation of Virtual Currency Business Act, 以下簡稱VCBA)全文、總說明以及利害關係人意見,對於虛擬貨幣(virtual currency)提供管制架構,囊括虛擬貨幣定義和適用範圍、營業執照要求、跨州互惠原則、消費者保護、網路安全、反洗錢和對進行虛擬貨幣商業活動者之監管等重要問題,作為各州相關立法參考。迄今美國夏威夷州和內布拉斯加州分別向州議會提案,朝向採用VCBA作為該州虛擬貨幣管制參考規範之方向討論。
印度電力部公布「綠色氫能政策」,擬透過政策誘因建立綠氫產業鏈印度電力部(Ministry of Power)於2022年2月17日公布「綠色氫能政策」(Green Hydrogen Policy),宣告未來擬透過稅制、費用等誘因,建立綠色氫能產業鏈,以達到印度於COP26高峰會所承諾之減碳目標。 有鑑於綠色氫能是直接由再生能源電力所產生,故其相較於灰色氫能(註:由石化過程所產生之氫能)及藍色氫能(註:經碳封存之灰氫)而言,擁有更低之碳排放,有助於印度於COP26高峰會所承諾之減碳目標。然於技術或經濟層面而言,綠氫成本因為其產生、運輸、儲存過程要求相當高之費用以及成本,故遲遲無法普及,印度電力部為增進業者建立氫能產業鏈之經濟誘因,於2月17日公布前揭政策,以為因應。 印度電力部前揭政策,擬針對用地、電力市場等法規進行調適,相關法規調適重點如下: 定義綠色氫能為「直供」或「轉供」再生能源電力電解所得之氫能,也包含生物質能所生產之氫能。 於2025年6月30日前營運之綠色氫能生產業者,可免除25年之州際電力傳輸費用。 前揭綠色氫能生產業者,其所使用之電力可以是就地自再生能源發電設備取得(co-located),也可以是透過電力傳輸自其他再生能源發電設備所取得,不論該綠色氫能業者是否實際營運再生能源發電設備。 綠色氫能生產設備可被視為再生能源發電設備,被設置在相關用地上,並且,將開放綠色氫能設備設置於商港區域,以利綠氫出口。 因生產氫能所消耗或購買之再生能源電力,可計入RPS或RPO(Renewable Purchase Obligation)義務容量當中。 各州輸配電業,應允許綠色氫能生產業者加入電力交易市場。 承上,綠色氫能生產業者可進入餘電交易(banking)市場,並且餘電交易手續費應不超過「前一年度再生能源FIT價格」以及「當月日前交易市場之平均交易價格」間之差額。以避免氫能業者因經濟理由而被排除於餘電市場外。 但不論如何,對於印度而言,綠色氫能還只是發展初期階段,目前綠色氫能價格為每公斤3至6.5美元,而印度政府目標是於2030年將其降至1美元。對於大量仰賴能源進口之印度而言(85%石油及53%天然氣為進口),綠色氫能對於該國之能源自主有著相當重要的角色,因此印度政府將不餘遺力發展氫能。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
部落格及其法律問題之初探