今(2017)年七月,擁有著名「Toblerone瑞士三角巧克力(下簡稱Toblerone巧克力)」之食品大廠「億滋國際(Mondelēz International,下簡稱Mondelēz公司)」,對英國零售商Poundland及其供應商Walkers Chocolates所開發之新產品─Twin Peaks巧克力棒提出警告函,而使該新產品之上市時間延遲。 Mondelēz公司向英國倫敦高等法院提出Twin Peaks巧克力仿冒Toblerone巧克力之紅與金配色之包裝、logo及產品外觀,已侵犯其商標權。並指出Twin Peaks巧克力棒是「欺騙性和混淆性近似(deceptively and confusingly similar)」,使消費者誤認Twin Peaks巧克力棒為Mondelēz公司所生產。 而零售商Poundland於八月中所提之答辯指出,Twin Peaks巧克力棒已取得英國註冊商標,並主張:儘管Mondelēz公司早在1997年將Toblerone巧克力之稜柱體註冊為歐盟立體商標(three dimensional mark),然而因應原物料成本上漲,Mondelēz公司為了不影響售價而於去(2016)年底將該產品之外觀作了變更,包括增加稜柱體之間距、並使原本十二塊稜柱體縮減為九塊;此外,Mondelēz公司於英國所販售之Toblerone巧克力早自2010年起,已改為十一塊稜柱體,亦非當初註冊商標之十二塊稜柱體,因此零售商Poundland聲稱Toblerone巧克力之外觀已不足以具有識別性(distinctive),使該商標「不可避免地被放棄(irretrievably abandoned)」而質疑該商標之有效性。 比對兩者之外觀,相對於Toblerone巧克力為單峰稜柱體,並以瑞士阿爾卑斯山之馬特洪峰(Matterhorn)為意象;而Twin Peaks巧克力棒則為併列之雙峰,且象徵英國之瑞金山(Wrekin)。商標係用以區別商品或服務來源,當其他廠商巧克力棒之產品外觀採用與Toblerone巧克力相同或近似之外觀,使該外觀喪失識別性而趨於通用性(generic),將無法作為商標使用,也因此Mondelēz公司強調其產品之識別性以捍衛其商標權,本案後續發展尚待觀察。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
英國實行個人健康和社會照護資訊連結服務(care.data)隨著英國國家健康服務(National Health Service, NHS)的改革,英國於去(2012)年3月27日通過衛生和社會照護法(The Health and Social Care Act 2012)。當中一項主要的變革即是成立衛生與社會照護資訊中心(The Health and Social Care Information Centre, HSCIC)作為醫療健康資料的專責機構。而這樣的變革,也影響過去病歷資料的蒐集、分享和分析方式。依據衛生和社會照護法的規定,HSCIC若受到衛生部長(Secretary of State for Health)指示、或來自照護品質委員會(Care Quality Commission, CQC)、英國國家健康與臨床卓越研究院(National Institute for Health and Clinical Excellence, NICE)、醫院監管機構Monitor的命令要求時,在這類特定情況之下,可以無需尋求病患同意,而從家庭醫師(GP Practice)處獲得病患的個人機密資料(Personal Confidential Data, PCD)。 今(2013)年3月獲NHS授權, 由HSCIC於6月開始執行的care.data服務,即是依據前述立法所擬定之方案。care.data藉由定期蒐集醫療照護過程中的相關資料,對病患於國內所為的各項健康和社會照護資訊(例如病患的住院、門診、意外事故和緊急救護記錄)進行具延續性之連結。以提供即時、正確的NHS治療和照護資訊給民眾、門診醫師和相關部門之官員,進而達到care.data所設定的六項目標,支援病患進行治療的選擇、加強顧客服務、促進資訊透明性、優化成果產出、增加問責性,並驅動經濟成長。 然而,由於care.data是以英國民眾就醫行為中,屬於基礎醫療的家庭醫師(General Practitioner, GP)系統為基礎,所提取的資料包括家族歷史、接種疫苗、醫師診斷、轉診記錄、生理指標,以及所有NHS處方。其次,care.data在進行初級和次級資料連結時,將會透過NHS號碼、生日、性別和郵遞區號,這四項可識別資料的比對。因此雖然care.data在涉及敏感性資料時會加以排除,但此項服務仍引起社會上相當大的爭議。包括部分醫師、隱私專家和的社會團體皆提出質疑,質疑care.data是否有充分告知病人、HSCIC所宣稱的匿名性是否足夠、此項服務對醫病關係的衝擊、該服務所宣稱的資料分享退出機制(opt-out)並未妥善等。 care.data是NHS所推出的創新資料現代化服務,但同時也涉及病患隱私權保護之議題。反觀我國近來所推動的醫療健康資訊加值再利用政策,英國的案例值得我們持續觀察其發展。
瑞士ESG新法規正式生效全球多個國家目前正在促進企業推動「環境、社會和公司治理」(Environment, Social Responsibility, Corporate Governance, ESG)事務,以瑞士為例,有關ESG的新法規於2022年1月1日正式生效。 在2022年1月1日生效的提案中,主要是對《瑞士債法典》(The Swiss Code of Obligations, CO)提出修正,包含「涉及公共利益(public interest)的企業應提出ESG事項報告」與「企業應就有無使用童工及衝突地區的礦物金屬進行盡職調查(Due Diligence)」,分別說明如下: 一、公共利益企業應提出ESG事項報告 依《瑞士債法典》第32章新增的第6節「非財務事項之透明度」(Transparency on Non-Financial Matters)規定,符合條件的上市公司或受監管實體等公共利益企業,每年應提出一份單獨的非財務事項報告,內容須涵蓋環境事項、社會問題、員工相關問題、尊重人權和打擊腐敗等議題,以及公司對該等議題所提出的政策措施、風險評估和實施績效等資訊。此報告經企業內部最高管理層與治理機構批准後,須立即於網路上公開,並確保至少十年內可供公眾存取。 二、企業應就有無使用童工及衝突地區的礦物金屬進行盡職調查 依《瑞士債法典》第32章新增的第8節「與來自受衝突影響地區的礦物金屬以及童工相關的盡職調查和透明度」(Due Diligence and Transparency in relation to Minerals and Metals from Conflict-Affected Areas and Child Labour)規定,所在地、總部或主要營業地點位於瑞士的企業,如在瑞士自由流通或加工來自受衝突影響和高風險地區(conflict-affected and high-risk areas)的特定礦物或金屬,抑或產品或服務被合理懷疑是使用童工製造或提供而成,原則上即須遵守供應鏈中的盡職調查義務,每年亦應將其遵守情況編制成報告。此報告應在會計年度結束後的六個月內於網路上發布,並確保至少十年內可供公眾存取。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).