本文為「經濟部產業技術司科技專案成果」
美國國土安全部(Department of Homeland Security, DHS)於2024年3月17日發布「2024人工智慧路線圖」(2024 Artificial Intelligence Roadmap)(下稱AI路線圖),設立三大目標,將偕同旗下機關與產官學研各界合作,確保AI的安全開發與部署,保護國家關鍵基礎設施安全,以強化國家安全。 美國拜登總統於2023年10月30日簽署的第14110號總統行政命令《安全可靠且值得信賴的人工智慧開發暨使用》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)(下稱AI總統行命令),要求DHS應管理使用於關鍵基礎設施與資通安全的AI、制定全球AI標準並推廣、降低利用AI造成具有大規模殺傷力武器攻擊之風險、保護AI智慧財產權、以及吸引AI領域人才,以促使、加強AI開發與部署等事項。為踐行上述事項,DHS制定AI路線圖,其三大目標如下: (1) 負責任的使用AI以推進國安任務(Responsibly Leverage AI to Advance Homeland Security Mission):透過建置AI基礎建設、建立AI系統測試與評估(Testing and Evaluation, T&E)、推動AI人才培育計畫等行動措施,帶領主管機關負責任的使用AI,以保護國家安全及避免AI對關鍵基礎設施的風險,確保AI於使用過程中係尊重個人隱私、保護公民權利與自由。 (2) 促進AI安全與資安(Promote Nationwide AI Safety and Security):利用AI技術改善與預防關鍵基礎設施之安全與資安風險、制定關鍵基礎設施之AI使用指引、以及成立AI安全與資安委員會(AI Safety and Security Board, AISSB),彙集產官學研各界專家意見。 (3) 透過擴大AI國際合作來引領AI發展(Continue to Lead in AI Through Strong, Cohesive Partnerships):將透過與產官學研各界合作,擴大AI的國際合作,並持續與公眾進行意見交流與分享,推廣AI政策或相關行動措施;DHS亦將持續與參眾議院及其他主管機關匯報AI相關之工作進度與未來規劃,以提升部門AI的透明度,並建立公眾對AI的信任。
Regolith的試煉:太空物質私有化美國國家航空暨太空總署(National Aeronautics and Space Administration,NASA)向企業購買月球Regolith(岩屑層)與岩石物質,並於2020年9月提出《月球Regolith採購工作績效聲明》(Lunar Regolith Purchase Request Performance Work Statement)。惟月球的物質,是否可以開採? 依據《各國探索與應用外太空、月球暨其他天體之活動管理原則條約》(Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies)第2條,外太空、月球與其他星體,非任何國家可藉由使用、占領與其他方式,或應用國家經費,而宣稱擁有主權。針對NASA的月球物質採購計畫,是否合乎該條約?NASA署長Jim Bridenstine指出,Artemis計畫增加商業參與,要求企業蒐集小型的月球「塵埃」(dirt),或月球表面的岩石。Jim Bridenstine並認為此項提案,充分遵守該條約與其他國際義務。申言之,NASA認為月球之物質,具有私有化之可能性。 為採購企業蒐集之月球物質,NASA擬定《月球Regolith採購工作績效聲明》,規範企業的義務為:1、自月球表面蒐集50克至500克的Regolith或岩石物質;2、提供NASA蒐集與物質的影像,該資料足以識別蒐集地點為月球表面;3、就地(in-place)移轉NASA蒐集物質的所有權,此些物質並將成為NASA得以使用的私有財產(sole property)。企業得以決定在月球表面的任何地點蒐集,且無須評估蒐集的材料;NASA係採購蒐集狀態(“as-collected” condition),並有權利獨立確認企業蒐集物質的聲明。亦即企業的任務為採購物質,並提出證明;對月球物質的評估,則由NASA為之。 企業對NASA採購月球物質之履行,須於2024年以前完成;NASA對契約的獎勵,並不以月球物質蒐集的數量為基準。NASA對企業採購月球物質的支付依據:10%來自於企業完成NASA概念審查的提案;10%係企業為此蒐集任務,而由企業系統發射航空器至太空;80%為達成移轉NASA太空物質的所有權。另外,機器人登陸器(robotic lander)的設計與建構,並非屬NASA向企業徵集太空物質之內容。換言之,NASA之採購計畫並非強調太空物質之蒐集數量,而係著重於太空物質所有權之移轉。 綜上所論,NASA向企業採購月球Regolith與岩石物質,並以所有權之移轉為主,開啟太空物質私有化的可能性。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
美國提出「個人資料隱私暨安全法案草案」,規範聯網環境商業應用及隱私權利面對層出不窮資料違背或身份竊盜事件,2014年初, FTC於美國國會的例行會議上,就數位時代關於隱私權之保護課題進行作證,會議中,FTC乃呼籲美國國會應立即通過制定一個更強的聯邦資料安全與違背提醒的法律,其也進而提出「個人資料隱私暨安全法案(草案)」 (Personal Data Privacy and Security Act of 2014, S.1897)。該草案主要分成兩大部分: 第一部份,將強化身份竊盜和其他違反資料隱私與安全之懲罰;第二部份,係關於可茲辨識個人資料(PII)之隱私和資訊安全。 法案第202條係關於「個人資料隱私與安全機制」(personal data privacy and security program),目的在強化敏感性可茲辨識個人資料的保護,從行政(administrative)、技術(technical)和實體(physical)三個構面的防衛機制,進行相關標準之制訂與落實。有關適用之範疇,乃就涉及州際貿易之商業實體,而該州際貿易包含蒐集、近取、傳輸、使用、儲存或在電子或數位格式處理可茲辨識個人之敏感性資料,而這些資料總計多達1萬筆以上,然而,將不適用於金融機構(financial institutions)、醫療保險轉移和責任法(HIPPA)所管制者、服務提供者(service provider)和公共紀錄(public records)。 而在機制設計上,也係從「設計」(DESIGN)、「風險驗證」 (RISK ASSESSEMENT)和「風險管理」(RISK MANAGEMENT)三個角度進行切入,也必須確實提供員工教育訓練(TRAINING)、弱點測試(VULNERABILITY TESTING)、定期驗證和個人資料隱私與安全之更新,另外,在與外部與服務提供者(例如ISP)之關係上,公司必須盡到適當勤勉的義務(due diligence),也必須透過契約(contract)方式,約定前述所建置起之資料隱私安全機制,並在安全性遭受到侵害時,以合理方式通知締約他方。 本案目前在聯邦參議院已經二讀通過,已交付參議院司法委員會進行下一階段的審議,該立法草案未來是否會直接或間接影響物聯網環境生態系統之商業運作,有待未來持續關注之。