印度對TK( Traditional Knowledge傳統知識 )保護提出的建議修正案

  近年來許多先進國家的藥廠或是生技公司紛紛到生物資源豐富的國家從事生物探勘活動,希望可以尋找合適的生技產品候選者 (candidate) ,也因此產生許多不當佔有的生物盜竊 (biopiracy) 事件。


  由於印度本身在
2002 年專利法修正時,特別規定生技發明之專利申請者若使用生物物質 (biological material) ,應揭露其地理來源 (source of geographical origin) ,未揭露其來源地或提供錯誤資訊者,則構成專利撤銷之理由; 2005 年的專利法修正的重點之一為「加強專利授予前異議 (pre-grant opposition) 機制」,意即未揭露生物物質之來源地或提供錯誤資訊者,或者申請專利之權利內容含有傳統知識者,可提出異議之事由。


  目前國際間針對是否應強制規定申請人應揭示其來源地等仍無共識。從
2001 年的杜哈發展議程的談判會議結果即可知,由於該談判採取 「單一承諾( Single Undertaking )」模式且可從不同議題間相互掛勾,加上開發中及低度開發會員採取結盟方式來壯大談判立場,在某些關鍵議題與美國、歐盟等主要會員國形成抗衡局面。 開發中國家對於 TRIPs 27 條第 3 b 款的審議特別在乎,認為 TRIPs 協定應該修訂應納入上述的揭露需求外,還必須提供事先告知且同意 (prior informed consent) ,以及因該專利而獲取的利益與來源地分享之證明。


  因此,印度提出修正
TRIPs 協定的建議,強制會員國必須改變內國法律,規定專利申請者必須揭露其發明所使用的生物物質來源,並希望能在今年 12 月香港部長會議裡討論。

相關連結
※ 印度對TK( Traditional Knowledge傳統知識 )保護提出的建議修正案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=422&no=64&tp=1 (最後瀏覽日:2026/01/21)
引註此篇文章
你可能還會想看
芬蘭電子化政府服務採用行動數位簽章

為了便利經常透過網際網路與政府打交道的民眾,芬蘭人口登記中心 (The Finnish Population Register Centre) 推出了一項創新的方式,也就是利用行動電話提供網路服務的安全憑證。而 Elisa 是首家與芬蘭人口登記中心合作並提供行動電話使用者身分認證這項服務的電話公司。   由芬蘭第二大行動電話網路公司 Elisa 所推出的第一批載有行動簽章 (mobile signature) 所需之安全憑證的行動電話 SIM 卡正式問世,此種 SIM 卡是以國際高科技集團捷德公司 (Giesecke & Devrient, G&D) 的 UniverSIM 產品為基礎所研發,卡片上載有一張類似我國自然人憑證的公民憑證 (citizen certificate) ,具有簽章功能與加密機制。此種技術屬於行動安全建置 (mobile security architecture) -也就是公開金鑰基礎建設 (PKI) -的一部份,能夠確保身分辨識所需具備的安全性與獨特性。   想要利用這項透過行動電話之數位簽章享受政府服務的民眾 可以在當地警察局登記, 預計在 2005 年底前,芬蘭的 OKO 銀行、社會保險機構、稅務機關以及勞工局等都會利用這個新的行動公民憑證 (mobile citizen certificate) 來提供服務,這將會使芬蘭人民擁有一個全國性數位服務的電子身分證。此舉也使得芬蘭在行動通訊與電子化政府領域的領先地位更形穩固。

法國CNIL重罰微軟因搜尋引擎Bing違法運用cookie

  法國國家資訊自由委員會(Commission Nationale de l'Informatique et des Libertés, CNIL)基於cookie聲明(cookie banner)違反法國資料保護法(Act N°78-17 of 6 January 1978 on Information Technology, Data Files and Individual Liberties)裁罰微軟愛爾蘭分公司(Microsoft Ireland Operations LTD,下稱微軟)搜尋引擎Bing,並根據cookie蒐集資料間接產生的廣告收入、資料主題數量及處理的資料範圍定出6千萬歐元之罰鍰額度,且要求微軟應於3個月內限期改正,如逾期按日處以6萬歐元罰鍰。本案是繼2022年1月6日以來,CNIL以相同理由分別對Google與Facebook裁罰1.5億及6千萬歐元罰鍰後,再增1件科技巨頭因違法運用cookie遭受裁罰之案例。本案對我國隱私執法機關參酌於數位環境中,應就cookie聲明如何進行管理之理由與細節,具有參考價值。   而本案微軟之搜尋引擎Bing遭受裁罰之理由,主要可分為二面向:   一、未經使用者事前同意,逕於使用者設備中設置cookie   依法國資料保護法第82條規定,業者利用cookie或其他追蹤方式針對使用者終端設備上的資料進行讀取或寫入資料前,應盡告知義務並取得使用者同意。惟搜尋引擎Bing在使用者造訪網站時,未經使用者同意便設置一種具有安全及廣告等多種用途的cookie(MUID cookie)於其電腦設備,且當使用者繼續瀏覽網站時,將會另設置其他廣告cookie,然微軟亦未就此取得使用者同意。   二、拒絕設置cookie與給予同意之方式便利性應相同   在有效同意的標準與具體判斷上,由於搜尋引擎Bing的cookie聲明第一階層僅提供「接受」與「設定」兩類按鈕,並未提供「拒絕」按鈕,因此使用者同意或拒絕設置cookie之流程便利性有其差異,並未一致,如下說明:   (一)使用者同意設置cookie   如使用者同意設置cookie,僅需於cookie聲明的第一階層點擊「接受」按鈕,即完成設置。   (二)使用者拒絕設置cookie   若使用者欲拒絕設置cookie,需於cookie聲明的第一階層點擊「設定」按鈕;其後進入第二階層,使用者可於各類型cookie選擇開啟或關閉,再點擊「保存設定」按鈕,始完成設置。   是以使用者拒絕同意設置cookie與給予同意之方式,兩者的便利性並未一致。又因第二階層顯示默認未設置cookie,恐導致使用者誤以為網站並未設置cookie,故CNIL認為此種同意欠缺自願性而屬無效者。

日本總理公布「推展氫(水素)燃料基本方針」並加速落實再生能源計畫

  日本首相安倍晉三於2017年4月11日出席「第一次再生能源及氫(水素)燃料內閣會議」,在會議中進行加速引進再生能源及落實氫燃料社會等議題探討,並公布「推展氫(水素)燃料基本方針」,以達成2020年具有4萬台電動汽車之目標,並推展相關氫燃料之相關規範及準備,謹對於相關重點政策綜述如下: 一、為擴大再生能源之使用,5年內中央及各級政府共同展望12項計畫: 風能、地熱環境影響評估迅速化,並支援該地區之行政推廣。 透過地熱等開發,促進鄉鎮觀光發展。 擴大中小型水利之開發,統一提供及利用全國之資訊等。 林業及廢棄物處理、下水道政策之共同合作,促進生質能源發電。 促進海上風力發電,並檢討相關制度及環境規範。 為確保長期安定的太陽能發電,審視法規及相關制度。 引進低成本及遠距離控制之蓄電池。 以分散型能源系統,促進再生能源之利用。 相關行政程序之迅速化,以一站式窗口提供服務。 1與當地及環境共榮共存。 1低成本化及先端技術之研究開發。 可再生能源技術之海外支援。 二、邁向氫燃料社會之無碳排放目標:   首先,擴大電動車燃料電池、家用燃料電池等相通之氫燃料之利用,中長期於2020年以氫發電及大規模國內外氫原料之供應鏈,最終希望建立無碳排放之氫燃料電力供應系統目標。   在有擴大引進再生能源,並兼顧國民負擔之目標下,日本於2016年5月修正電氣事業再生能源電氣(FIT法)相關特別措施,且於2017年4月開始引進相關新的事業計畫及措施。

世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書

  世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。   包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。   在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。   綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。

TOP