本文為「經濟部產業技術司科技專案成果」
美國眾議院(United States House of Representatives)於2021年10月20日通過安全設備法案(Secure Equipment Act)、通訊安全諮詢法案(Communications Security Advisory Act)、資通訊科技戰略法案(Information and Communication Technology Strategy Act)與國土安全部軟體供應鏈風險管理法案(DHS Software Supply Chain Risk Management Act),以提高網路之可信任度、防止採用構成國家安全風險的設備、支持小型通訊網路供應商,並促進產業供應鏈的經濟競爭力。美國總統拜登(Joseph Robinette Biden Jr.)於同年11月11日完成簽署《安全設備法》。 《安全設備法》旨在禁止聯邦通訊委員會(Federal Communications Commission, FCC)頒發設備許可予構成美國國家安全風險之公司,其目的係為防止美國的網路系統遭受中國大陸設備的監控,保護美國公民的隱私與安全。近年來,美國以國家安全與技術、隱私保護為由,逐步以政府禁令或動用政府影響力,防堵華為、中興等其認為與中國政府關係密切之中國通訊設備業者。自2019年5月15日美國白宮頒布之第13873號行政命令,至2021年10月20日美國眾議院通過電信設施基礎安全四大法案,並美國商務部於隔日即發布「禁止出售、出口駭客監視工具予曾有侵犯人權紀錄的專制政府及地緣政治之敵人」等規定,各種限制手段展現美國保護國土安全之決心。 此外,《通訊安全諮詢法案》、《資通訊科技戰略法案》與《國土安全部軟體供應鏈風險管理法案》分別就通訊網路的安全性、可靠性與操作性;資通訊技術供應鏈報告(例如:定義何謂「對美國經濟競爭力至關重要的資通訊技術」等)」;以及資通訊技術或服務合約之指導方針如何改善國家網路安全等相關事項予以規範。目前,此三大法案皆於參議院二讀後提交至委員會,後續發展應密切關注。
新近奈米科技智財法制之發展趨勢 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
日本內閣閣議決定2023年度朝向數位社會實現之重點計畫,強化活用數位技術之法規整備2023年6月9日,日本內閣閣議決定2023年度「朝向數位社會實現之重點計畫」(デジタル社会の実現に向けた重点計画)。該計畫是針對數位社會之實現,明確記載日本政府應迅速且重點性實施的政策及各行政機關於整體社會結構改革(こうぞうかいかく)、個別施行政策之努力,並做為日本向世界提出建言時的羅盤。 其中,值得關注的是日本對於為活用數位技術所做之法規整備。根據2022年12月日本數位廳轄下的數位臨時行政調查會(デジタル臨時行政調査会)的調查,確認與實地檢查、定期檢查、文件閱覽等相關之法律條文內含過時概念,以致於會對數位轉型之發展造成阻礙的條文(下稱過時法律)約有一萬條。對此,數位臨時行政調查會表示,數位改革與法律改革之間的關係為一體兩面,為了最大化發揮數位化的效果,法律改革的相關檢討亦應一併執行。各法律之相關行政機關應依照「基於數位原則對過時法律所作之修正工程表(デジタル原則を踏まえたアナログ規制の見直しに係る工程表)」對各過時法律做出相關檢討,並以2024年6月修正各過時法律為目標。 舉例來說,為實現民事判決的全面數位化,2022年5月18日,日本參議院通過了民事訴訟法等法律的部分修正案,其中最值得關注的部分為當事人可以透過網路向法院提起訴訟、提出準備資料,以及透過網路受領法院送達之相關訴訟文書等。該修正案亦包含訴訟中程序之修正,以言詞辯論程序為例,當事人可透過線上會議之方式進行言詞辯論程序,惟施行期間預計於公告後2年內開始實施。 台灣於2015年7月就智慧財產行政訴訟事件正式啟用線上起訴系統,同年9月開放稅務行政訴訟事件使用,並於2016年開放民事訴訟事件使用。該系統與日本體系不同之處在於,日本目前僅就民事訴訟事件開放線上起訴系統之使用。不過,日本2022年針對刑事訴訟法數位化之部分做出相關報告書,可預期日本將來也會將線上起訴及審理系統導入刑事訴訟法之領域。未來可以持續觀察日本就線上起訴及審理系統之訂定及政策施行方向,作為我國之參照。 本文同步刊登於TIPS網站(https://www.tips.org.tw)