本文為「經濟部產業技術司科技專案成果」
2023年4月韓國政府公布「數位平台政府(디지털플랫폼정부위원회,Digital Platform Government)實施計畫」,促使政府全面結合人工智慧和資料運用,打破過往部會機關個別發展數位專業的阻隔,為國民提供數位化整合的政府服務,並鼓勵企業創新。 「數位平台政府」為2022年新任總統尹錫悅推行的政府改革措施之一,同年7月頒定組織條例,成立直屬於總統之「數位平台政府委員會」,委任財政、科學、行政及個資保護4部會首長及19位專家組成。數位平台政府實施計畫預計2027年完成,計畫訂出4項數位平台政府關鍵服務任務,任務目標與對應措施如下: (1)政府為人民服務:建立政府綜合服務窗口,統整中央、地方各級單位之千餘種稅捐、福利等內容,提供如「青年政策整合」之個性化便利服務,以減少人民不便與潛在社會問題。 (2)智慧的一體式政府:擴大機構間資料的共享與利用,打破部會之間、中央和地方政府之間的資料孤島情形,目標串連1.7萬餘的政府系統,成為政府創新基礎設施,以靈活應對快速變化的外部環境。 (3)公私協力的成長平台:打造數位經濟生態系,以交通、安全、能源和城市為初步建置領域,後續擴展到醫療、環境和公共管理等,預計培養1萬家基於此生態系經營的SaaS(Software as a Service,軟體即服務)公司。 (4)可信賴的平台政府:加強人民對個人資料的控制權,將於數位政府平台中引入資料近用記錄檢查和管理功能,並採用「零信任」、「供應鏈安全」等機制提高安全性。
美國司法部宣布德國SAP公司承認違法將美國軟體產品出口至伊朗,雙方達成不起訴協議美國司法部於2021年4月29日宣布,德國SAP全球軟體公司承認從2010年1月至2017年9月,因未能識別用戶下載軟體的地理位置,導致美國原產技術和軟體在未經許可下,透過雲端伺服器和入口網站提供給伊朗用戶,已違反美國《出口管制規則》(Export Administration Regulations, EAR)和《伊朗交易和制裁條例》(Iranian Transaction and Sanction Regulation, ITSR)。SAP向美國司法部、商務部和財政部支付800萬美元罰款並配合調查與補救,雙方達成不起訴協議。 美國司法部指出,SAP違規行為主要為以下兩種。首先,SAP及其海外合作夥伴向伊朗用戶輸出超過20,000次的美國軟體產品,其方式包括軟體的更新、升級和修補程式。SAP及總部位於美國的供應商,均未使用地理位置過濾器來識別並阻止伊朗用戶下載,且多年來SAP並未採取任何措施解決此問題,導致伊朗用戶下載後,絕大多數美國軟體再流向土耳其、阿聯酋及多家伊朗跨國公司。其次,SAP旗下的雲端企業Cloud Business Group companies(簡稱CBGs)允許約2,360名用戶在伊朗使用美國的雲端運算服務。從2011年開始SAP陸續收購多家雲端服務供應商成為其CBGs,透過收購前的盡職調查及收購後的出口管制特種審計,清楚了解到這些CBGs缺乏足夠的出口管制與制裁合規程序,但SAP仍允許CBGs被收購後繼續作為獨立實體營運,且未能將CBGs完全整合至SAP自身的出口管制規劃中。 美國司法部指出,為確保軟體等美國敏感技術產品,不會非法出口至伊朗等禁運地,公司除必須識別用戶來源外,也有責任確保供應鏈下游與之為產品交易的外國子公司能識別產品輸出地,並且同樣遵守美國經濟制裁政策與出口管制法規,維護美國外交政策與國家安全,防止美國敏感技術落入競爭對手手中。
Google提供免費專利給新創公司Google於2015年7月24日發布專利創客專案(Patent Starter Program),提供參加專案的新創公司免費授權使用兩項專利。此計畫是奠基於License on Transfer (LOT) Network專利授權聯盟的運作,該聯盟是2014年由Google、Dropbox、SAP、Canon、Asana及NewEgg等六家公司共同成立,目的透過聯盟成員間專利交叉授權協議,以對抗專利流氓(patent troll)的濫訴行為。 專利創客專案計畫開放50家於2014年收入介於50萬至20億美元間的新創公司得免繳會費參與LOT聯盟兩年,並依據新創公司業務範圍,提供3至5項專利清單,新創公司可從中選出兩項予以免費使用。另外,這些新創公司有機會瀏覽GOOGLE非專屬授權資料庫,找尋所需專利並詢問GOOGLE出售意願。需要注意的是,在專案期間內,參與成員對於透過專案獲授權之專利,僅得為防禦使用,違反時Google有權終止並予以處罰。同時參與成員亦必須於專案期間遵守聯盟專利交叉授權協議之規範。 整體來說,由於Google提供給新創公司的免費專利清單項目有限,新創公司未必能得到真正有需求的專利,但考量加入專案後,得受到LOT成員間專利交叉授權協議的保護,對於新創公司而言,仍可一定程度避免受到專利流氓危害,而具有正面意義。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).