美國加州北區聯邦地方法院,於去年(2017年)12月5日做出關於雇員刪除其由公司提供電腦中與公務無關資料是否屬電腦犯罪之判決(United States v. Zeng, 4:16-cr-00172(District Court, N.D. California. 2017).)。 該案情為曾(Zeng)氏為避免其竊取自家公司商業機密行為被揭發,而逕自刪除其在公司提供筆記型電腦內之相關資料。而嗣後仍然被公司發現並報案,於此偵查單位FBI則以曾氏違反電腦詐欺及濫用法案(Computer Fraud and Abuse Act,下稱CFAA)中「未經授權而毀損他人電腦(18 U.S.C. § 1030(1984).).」以美國政府名義(下稱控方)起訴曾氏刪除其犯罪證據之行為。 對於該控訴,被告曾氏以被刪除之電子紀錄與其業務無關,非為公司所有財產為由作為抗辯。此外曾氏同時以其他判決主張毀損電腦之定義應係指由外部傳輸行為所致(如駭客行為),電腦使用者自己刪除行為應不包含之,以及控方未舉證其刪除行為將導致公司有不可回復或無法替代之損害作為抗辯。於此,控方則以刪除行為不應以內容而有所區分作為回應。 在審理期間,承審法官多納托(Donato)氏除參酌控辯雙方證詞外,並特別詢問控方律師指控內容是否會對一般大眾造成其在公用電腦中刪除同類資訊上之顧慮。而控方則以曾氏行為屬特殊情況作為答辯。最後,多納托氏則以控方主張將造成社會恐慌以及控方未提出被告刪除資料行為究竟對公司有何實際損害,判決被告無罪。
政府資訊加值利用與管理法制研究:以美國及英國為例 瑞士洛桑管理學院公布《2025年IMD世界競爭力年報》瑞士洛桑管理學院(International Institute for Management Development, IMD)於2025年6月17日發布《2025年IMD世界競爭力年報》(IMD World Competitiveness Yearbook),針對全球69個國家與地區,從「經濟表現」、「政府效能」、「企業效能」及「基礎建設」四大面向進行綜合評比,瑞士、新加坡與香港分列前三,展現其制度穩定性與政策應變能力的優勢。 排名第一的瑞士,擁有強健的制度架構,且其「政府效能」與「基礎建設」表現卓越,然瑞士在「經濟表現」與「企業效能」表現略有下滑,主要與公共採購制度的透明度相關,當地企業反映,公共部門合約對外國投標者開放程度不足,限制市場競爭並影響外資參與。 新加坡「經濟表現」亮眼,使其整體競爭力維持在第二名,然因企業外移嚴重,其「企業效能」由去年的第二名滑落至第八,對未來競爭力構成威脅。 香港由第五名升至第三,四大面向皆有明顯進展,顯示其持續改善投資環境;且香港在企業效能方面表現出色,有效強化其作為全球金融中心的地位。 我國排名第六,較去年上升兩名,展現整體競爭力持續提升。四大面向表現均衡,尤以「經濟表現」與「企業效能」成績亮眼,顯示我國出口動能穩定,企業具備良好轉型能力與國際競爭力,科技產業持續發揮關鍵影響力。「政府效能」維持穩定,財政與稅制制度具備競爭優勢,對營商環境有正面助益。惟在「基礎建設」與社會面向方面,仍面臨人口結構變遷、能源轉型與永續發展等挑戰,需持續強化相關制度與政策配套,以確保長期發展動能。 總體而言,競爭力除經濟與治理外,亦受社會及供應鏈變動影響。未來各國應持續強化治理與創新能力;兼顧社會包容性與產業永續發展,以維持長期競爭力。
日本發布美國數位政策現狀報告,呼籲推動AI發展的同時,亦應注重資料安全性日本獨立行政法人情報處理推進機構(下稱IPA)於2025年10月發布美國第二次川普政權數位政策現狀報告(下稱現狀報告),內文聚焦於美國政權輪換後數位政策之變動與解讀,同時提及在推動AI發展的同時,亦應注重其安全性。 日本觀測美國數位政策的現狀報告指出,隨著社會數位化程度日益增加,除了雲端數位資料的累積,以及提升對於AI的依賴程度外,亦會造成釣魚信件難以識別,透過可自動生成程式碼的惡意攻擊型AI進行攻擊行為等AI濫用之風險。 準此,美國為確保AI與資料的安全性,並維持其領域之競爭優勢,於2025年7月23日發布AI行動計畫,並提出三大方針,包括加速AI創新、建構AI基礎設施,以及透過國際性的AI外交與安全保障發揮領導能力。此外,內文亦提及為確保競爭優勢,需要建立作為AI發展基礎的科學資料集,並建置資料中心,同時確保其具備高度安全性,以避免AI使用者輸入AI之資料遭到竄改或外洩。 此外,現狀報告內文提及日本企業Softbank與OnenAI、Oracle等公司共同參與規模達5000億美元的Stargate計畫,並已於德州著手建設AI資料中心,顯示日本在美國的AI基礎建設中扮演重要角色並佔有一席之地。然而,內文亦指出美國數位政策具備不透明性而有潛在風險,須持續留意與關注。 我國企業如欲深耕AI領域,並透過AI進行技術研發,可由建立科學資料集開始著手,以作為訓練AI模型的基礎,以達到運用AI輔助及縮短研發週期、減少研發過程中的試錯成本等效益。此外,為確保安全性,科學資料集建置過程中所需之數位資料,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,建立貫穿數位資料生命週期之資料治理機制。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)