美國FDA擬參考PDUFA,向學名藥產業收費

  美國FDA官員新近對外表示,該局正考慮參考處方藥使用者付費法(Prescription Drug User Fee Act, PDUFA),研擬一套向學名藥產業收費的機制。PDUFA是美國國會在1992年所通過的法案,依據該法,生技及製藥產業向FDA支付「使用費」(user fees),FDA承諾每年達到一定的審查業績performance standards),以加速新藥上市申請。


  目前
PDUFA的適用對象並不包括學名藥廠,鑑於歷年來學名藥上市申請案件大幅攀升,以FDA既有之人力與資源,早已無法負擔如此大量的上市審查工作。另若考量諸多知名原廠藥之專利將在未來幾年陸續到期,如不增加新的資源,FDA的學名藥審查負擔將會持續惡化。使用者付費機制若能擴及學名藥,則FDA將可獲得額外資源,用來聘用更多的專業審查人員、取得更為豐富之資料,以保障病患之權益,使其可儘速近用便宜且有效之學名藥。


  雖然
PDUFA在改善新藥上市審查效率方面,確實達到了政府與產業界雙贏、民眾受惠的目的,不過這套制度要擴及學名藥產業,卻遭受到學名藥業界的反對。其中最主要的疑慮來自於,在現今的審查制度設計下,提高學名藥上市審查效率的目標是否能透過使用者付費達成,殊值懷疑。蓋根據美國法律規定,學名藥廠若以原開發藥廠之專利無效為理由申請上市,應將申請上市之事實通知原開發藥廠,一旦原開發藥廠認為學名藥廠侵害其專利並提起訴訟,FDA即必須停止學名藥之上市審查。據此,學名藥業界認為,在上述問題解決前,即使PDUFA擴及適用到學名藥產業,也並未能有助於改善學名藥上市審查之效率。


  總而言之,PDUFA若欲擴及學名藥產業,仍需釐清前揭疑慮並有待國會立法通過,不過,一旦使用者付費機制擴及適用於學名藥產業,則學名藥廠之藥物開發成本將會提高,我國學名藥廠如欲經營美國市場,值得注意其發展。

相關連結
※ 美國FDA擬參考PDUFA,向學名藥產業收費, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=436&no=66&tp=1 (最後瀏覽日:2025/04/02)
引註此篇文章
你可能還會想看
德國公布商業無人機新規範,加強操作安全及隱私保護

  隨著資通訊技術與網路科技整合,無人機熱潮在全球各地崛起,相關創新應用蓬勃發展,產業規模也因此快速擴張,然而國內外不斷傳出多起無人機意外事件,相關操作規範及隱私等法律議題也備受矚目。   德國聯邦交通部於2017年1月18日公布無人機新規範,以提升無人機操作安全,防止碰撞等意外事件,並加強隱私保護。所謂無人機即搖控飛行器,德國航空法上之定義包括模型飛機及無人航空系統設備,前者係用於私人娛樂或體育競賽,其餘飛行器,尤其是商業用途,則歸屬於後者,本次規範重點如下: 1.特定模型飛機場域內的操作規定,不受本次規範修訂影響,惟必須於操作之飛行器上標示所有人之姓名及地址供辨識。 2.超過0.25公斤之無人機或模型飛機,有標示所有人之姓名及地址供辨識之義務。 3.超過2公斤之無人機或模型飛機操作者,必須通過聯邦航管局技能測試或取得飛行運動協會核發之技能證書。 4.超過5公斤之無人機或模型飛機,必須額外取得各邦民航局之許可。 5.除特定模型飛機場域內,或例外經由各邦民航局申請核可者外,飛行高度不得超過100公尺。一般而言,應於視線範圍內飛行,但未來將可能適度放寬,以利商業無人機之運用發展。 6.無人機或模型飛機應避免與其他無人機碰撞。 7.禁止造成各種障礙或危險之飛行行為。 8.禁止商業無人機或模型飛機在敏感區域飛行,例如憲法機構、聯邦或各邦機關、警消救災範圍、人群聚集區、主要交通幹道、機場起降區。 9.超過0.25公斤之無人機或模型飛機,或配備光學、聲音、無線電信號發送或記錄設備之飛行器不得在住宅區飛行。   近來幾起無人機入侵機場事件造成嚴重飛安威脅,相關碰撞意外新聞也不斷頻傳。為兼顧生命財產安全及促進新興技術發展,有必要進行適度合理監管及預防措施,並加強操作安全及隱私教育,以降低危害風險,並於意外或違規事件發生後,得以追究肇事者相關法律責任。

美國司法部與聯邦貿易委員會聯合發布新「垂直合併指引」

  美國司法部 (Department of Justice, DOJ)與聯邦貿易委員會(The Federal Trade Commission, FTC)於2020年6月30日發布新的「垂直合併指引(Vertical Merger Guidelines)」,其為美國司法部與聯邦貿易委員會首次針對垂直合併所發布之共同指引,且為自司法部1984年「非水平合併指引(Non-Horizontal Merger Guidelines)」頒布以來,首次針對垂直合併之重大修正,內容旨在概述聯邦反托拉斯主管機關如何評估垂直合併之競爭效應、以及該等合併是否符合美國反托拉斯法。   本指引所適用之合併態樣包括嚴格垂直合併(於相同供應鏈之不同階段的公司或資產之合併)、斜向合併(diagonal mergers)(於競爭供應鏈之間之不同階段的公司或資產之合併)、以及於互補合併(mergers of complements)時所會產生之垂直議題。其描述主管機關用於判斷垂直合併之反競爭與促進競爭效果之分析架構。   於反競爭效果分析之單方效果方面,其提出可能之類型包括封鎖與提高競爭對手成本(Foreclosure and Raising Rivals’ Costs)、影響競爭之敏感資訊的近用(Access to Competitively Sensitive Information);於反競爭效果分析之共同效果方面,其指出垂直合併可能會透過鼓勵合併後相關市場中各公司間之協調互動(coordinated interaction)來減少競爭並傷害消費者。   於促進競爭效果分析方面,其著重於針對消除雙重邊際化(elimination of double marginalization, EDM)之分析,因垂直合併通常透過EDM使消費者受益,而傾向於可減少對競爭造成損害之風險。主管機關可以獨立依一切可得之證據來量化EDM之效果,其通常會檢驗被併購後可自給自足之效果,相較於若未被併購時需從獨立供應商購買之情況下所可能節省之成本,作為對於EDM效果之驗證。   藉由此指引之發布,可為主管機關對於垂直合併之評估與分析方式提供了透明度,而有助於為企業界、律師界、與執法者提供更多之可預測性。

「品牌台灣」計畫啟動 業界攜手成立品牌台灣創投基金

  台灣產業近年來因製造的附加價值降低,基於產業發展前景考量,過去台灣資源的配置太偏重製造,未來產業發展應朝品牌行銷與研發智財領域發展,以台灣有限的資源才能創造更高的附加價值。   為推動更多台灣產業朝品牌之路邁進,並期許台灣有更多的品牌企業能夠在國際上發光發熱,成為國人的驕傲,因此,宏碁創辦人、智融集團董事長施振榮出面號召,在與經濟部及外貿協會、諸多產業、投資界先進共同討論後,決定籌設一個以專業品牌行銷事業為投資對象的創投基金。外貿協會、智融集團於 3 月 21 日 正式對外說明「品牌台灣創投基金」的募資計畫,預計將募集 20 億元資金投資台灣品牌企業。目前行政院開發基金與經濟部貿易推廣基金也正在評估這項投資計畫,主辦單位並積極爭取有意投資品牌事業的民間企業共襄盛舉,希望帶動台灣品牌事業的發展。   「品牌台灣創投基金」是台灣第一個為發展品牌而將成立的基金,除了催生台灣產業轉型,發展品牌風氣外,也是有鑑於國內的創投多以技術作為投資取向,較缺乏針對微笑曲線右端之品牌事業的投資,因此希望以此專門投資品牌事業的基金,帶動國內品牌事業投資的新風潮。   未來品牌基金的投資對象,將專注於品牌行銷事業的投資,投資台灣具發展優勢的產業,且其產品、服務及營運模式要具有實現品牌國際化的機會,因此相當注重被投資企業的國際行銷能力。此外,未來基金投資的對象將不限於台灣地區,只要是品牌經營之核心能力在台灣,並且能夠建立國際級的品牌,且以提升台灣整體形象及價值的企業,都是投資考量的對象。

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

TOP