企業界興建廠房未來若排放的二氧化碳過高,可以透過在國內外協助造林等方式來改善。
農委會日前組成農業森林議題工作小組,積極蒐集國內外相關資料,推廣植樹造林對溫室氣體減量策略及作法,並調查出更精確的碳吸存數據,作為未來碳交易等機制所需的基本資料。其初步估算出每種植
農委會表示,目前的碳交易模式分為兩種,一種是進行國內外的造林,來換取本國二氧化碳的排放量,像是美、日等國,即在中國大陸廣泛種植樹木來換取更多的業者投資,或是在本國境內種植更多的林木,這種交易屬於碳交易。第二種是在本國境內進行溫室氣體的減量,再將減量超過的部分賣給其他國家,亦即清潔費的交易,也屬於廣義的碳交易行為。
為推動我國建立碳交易機制,農委會也已著手進行造林的碳吸存研究,農委會表示,未來碳交易機制建立後,業者興建廠房若排放的二氧化碳超過標準,可以透過協助國內外造林,或付出造林費用給協助造林的單位。在建立交易模式後,未來若企業界興建一座廠房所造成的二氧化碳排放量超過七公噸,即可透過支付
本文為「經濟部產業技術司科技專案成果」
紐約州總檢察長Letitia James於2024年1月5日與健康照護服務業者Refuah Health Center, Inc.(下稱Refuah公司)達成和解,主因為該公司遭受勒索軟體攻擊(ransomware attack),約25萬紐約州民個資遭到洩漏。和解協議要求Refuah公司支付共計45 萬美元之民事懲罰金及費用(penalties and costs),且應投資 120 萬美元加強網路安全(cybersecurity)。 Refuah公司主要業務為經營三家醫療機構和五輛行動醫療車(mobile medical vans)。2021 年 5 月,Refuah公司遭到勒索軟體攻擊,網路攻擊者得以近用數千名病人的資料,取得了包含姓名、地址、電話號碼、社會保險號碼、駕照號碼、出生日期、金融帳號、醫療保險號碼等資料。 依據檢察長辦公室的調查顯示,攻擊者之所以得近用這些資料,原因為 Refuah公司未採取適當安全維護措施,包括:未停用不活躍之使用者帳號(inactive user accounts);未定期更換使用者帳號憑證(user account credentials);未限制員工僅得近用其業務所必需之資源和資料;未使用多重要素驗證(multi-factor authentication)以及未加密病人資料。 依據協議內容,Refuah公司同意投資 120 萬美元,用於開發和維護更強大的資訊安全計畫(information security programs),以更妥適地保護病人資料。該協議還要求Refuah公司應: 1.維護全面的資訊安全計畫,以保護消費者資料的安全性、機密性和完整性; 2.實施並持續更新消費者資料近用限制相關政策和程序; 3.遠端近用資源和資料應使用多重要素驗證; 4.定期更新近用資源和資料的憑證; 5.至少每半年進行一次稽核,確保使用者僅近用其業務所必需之資源和資料; 6.對所有儲存或傳輸的消費者資料進行加密; 7.實施控制措施,監控和記錄公司網路和系統的所有安全和操作活動;以及 8.制定、實施和持續更新全面的事故應變計畫。 Refuah公司還須向州政府支付共計45 萬美元之民事懲罰金及費用,其中 10 萬美元將在該公司投入 120 萬美元開發和維護其資訊安全計畫後,得暫緩支付。
初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要 於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2] 此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3] 綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明 承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷 車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。 承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。 對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動 根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。 然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析 綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。 據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。
吃的安心 基改農產品安全性測試系統上路自從1994年第一種基因改造(Genetically Modified , GM)農產品~番茄在美國上市後,越來越多的GM農產品進入了我們的生活,使得大家越來越注重食用的安全性。行政院農業委員會農業藥物毒物試驗所開發的基因改造農產品安全測試系統於11月正式上路,日後台灣自行研發的GM農產品上市前,可以送到藥毒所檢驗,以確定對人體無害。 國際間對於GM農產品安全性爭議主要有兩個層面:生物安全性(作為食品之安全性)與生態環境安全(對環境的衝擊評估)。整體而言,GM農產品的食用安全評估以過敏性測試最為重要,也就是針對轉殖的DNA基因,測試其外源表現物質(蛋白質)對人體的影響,換句話說:蛋白質是較容易讓人體產生過敏的來源。 藥毒所開發的過敏反應和安全性測試系統,其針對GM農產品的評估方法有三:序列比對(和已知過敏原比對)、消化穩定性(採用人工胃液和腸液分解測試)、動物實驗模式(讓大白鼠直接食用)。相信這套安全測試系統的上路,可讓民眾食用台灣自行研發的GM農產品較為安心。
日本公布《空中移動革命藍圖》日本經濟產業省與國土交通省共同組成的「空中移動革命之官民協議會」(空の移動革命に向けた官民協議会),於2018年12月20日第4次會議中公布《空中移動革命藍圖》(空の移動革命に向けたロードマップ,以下簡稱「本藍圖」),期待飛天車(electric vertical take-off and landing, eVTOL)的實現可在都市交通阻塞時或欲前往離島、山間地區等情形下,提供新移動方式,也可運用於災害時的急救搬運及迅速運送物資等。 本藍圖之「飛天車」係電動垂直起降型的自動駕駛航空機,外型近似直升機,並規劃三條發展路線:實際應用目標、制度及標準之整備、機體及技術之研發。從實際應用目標出發,本藍圖規劃自2019年開始進行飛行測試和實證實驗,以2023年投入運用為目標。首先從運送「物品」開始進展到「部分地區的乘客」,2030年代將再進一步擴大實用到「都市中的乘客」。也可應用於災害應變、急救、娛樂等方面。 為了實現上述目標,即需整備機體安全性、技能證明等及未來投入商業應用時所需之各項標準及制度。當然機體及技術之研發也相當重要,透過試作機研發確保並證明機體安全性及可靠性、自動飛行之機上及地面管理系統、確保達到商業化程度的飛航距離及靜肅性之技術。並設定於投入應用後的2025年開始,重新檢討制度及提升技術。