美國眾議院於2013/10/22提出法案(Sensible Oversight for Technology which Advances Regulatory Efficiency Act of 2013,簡稱Software Act,HR3303),擬限制食品藥物管理局 (Food and Drug Administration,FDA)在與健康醫療有關軟體制訂規範的權限。 根據美國聯邦法典第21編第301條以下(21 U.S.C. § 301)規定,FDA對醫療器材擁有法定職權進行規範。FDA近來亦開始嘗試對醫療軟體APP制訂規範,包括附有生物識別裝置(如血壓監視器和照相機)、讓消費者可以蒐集資料、供醫生可遠距離進行部分檢測行為的行動設備。這項法案的支持者以為,FDA此舉將阻礙醫療創新,故擬透過Software Act界定FDA的規管權限。 這項法案主要增加了3個定義:醫療軟體(medical software)、臨床軟體(clinical software)和健康軟體(health software)。醫療軟體仍在FDA的管轄範圍內,但其他2類則否。惟本法案只確立FDA無權對資料蒐集類軟體進行規範,但對此類軟體得使用的範圍、或是否需另授與執照等議題並沒有著墨。提案者以為,後續應由總統和國會應共同努力,對臨床軟體和健康軟體制訂和頒佈立法,建立以風險為基礎的管制架構,降低管制負擔,促進病患安全與醫療創新。 所謂醫療軟體,指涉及改變身體(changing the body)的軟體。包括意圖透過市場銷售、供消費者使用,直接改變人體結構或功能的軟體;或,意圖透過市場銷售、供消費者使用,以提供臨床醫療行為建議的藥物、器材或治療疾病的程序;或其他不需要健康照護提供者參與的情境,但實施後會直接改變人體結構或功能的藥物、器材或程序。 僅從人體蒐集資料者,被歸類為臨床軟體(由醫療院所、健康照護提供者裝設)或健康軟體(由民眾自為)。兩者的區別,主要在由誰提供並裝設。 所謂臨床軟體,是醫療院所或健康照護提供者在提供服務時使用,提供臨床決策支援目的之軟體,包括抓取、分析、改變或呈現病患或民眾臨床數據相關的硬體和流程,但不會直接改變人體結構或任何功能。 根據Research2Guidance於2013年2月發表的調查報告(Mobile Health Market Report 2013-2017),目前在APPLE的APP Store上已有97,000個行動健康類的APP程式,有3百萬個免費、30萬個付費下載使用者。15%的APP是專門設計給健康照護提供者;與去年相比,已有超過6成的醫生使用平板提供服務。預測消費者使用智慧型手機上的醫療APP的數量,在2015年將達5億。這個法案的出現,外界以為,提供了科技創新者較明確的規範指引,允許醫療的進步和創新。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
勢在必行的全球企業最低稅負制經濟暨合作發展組織(Organization for Economic Cooperation and Development,下稱OECD)為因應數位化時代下,跨國企業集團透過數位科技所帶來有別於傳統交易的新交易模式等避稅安排使其獲益與稅負顯不相當,亦即稅基侵蝕問題,於2019年提出兩大支柱:支柱一為連結關係與利潤分配;而支柱二為全球反稅基侵蝕規定(Global Anti-Base Erosion rules,下稱GloBE),即本文討論之全球企業最低稅負制。然而全球企業最低稅負制提出之初,因歐盟各國意見不同無法形成共識,直至今(2021)年4月5日因美國財政部長葉倫(Janet Louise Yellen)公開表示正與G20成員國研議推動全球企業最低稅負制,加上近期歐盟各國態度已轉趨支持並附和,此議題終於再度引發國際與我國關注。 事實上,最低稅負制在我國並非新議題,我國早已制定「所得基本稅額條例」並施行多年,其中包括個人與營利事業基本稅額,然而GloBE所規範之全球企業最低稅負制將無可避免地於一定程度上影響我國營利事業所得稅及基本稅額的稅(法)制的調整與變動。加上我國自2019年3月脫離歐盟避稅觀察名單(俗稱灰名單)後,為避免再次被認列避稅天堂,稅制持續與國際接軌,故由OECD提出且美國贊同之全球企業最低稅負制,如各國拍板,我國將勢在必行。
世界經濟論壇2020年十大新興科技報告,與健康和環境相關之前瞻科技發展備受矚目世界經濟論壇(World Economic Forum, WEF)於2020年11月10日發表「2020年十大新興科技報告」(Top 10 Emerging Technologies 2020),報告中提出10個近年出現,且被認為在未來5年內最具有正面改變社會潛力的新興科技,並說明除了關注這些科技帶來的改變外,也應關注其引發的風險。 2020年全球最密切關注的議題為健康與氣候變遷,也因此2020年被認為具有發展潛力的新興技術均與這兩個議題有關,包含:(1)無痛注射與測試用的微針技術(Microneedles);(2)太陽能化學(Sun-Powered Chemistry)利用可見光將二氧化碳轉換為普通材料,可作為合成藥物、清潔劑、化學肥料和紡織品的材料;(3)虛擬患者(Virtual Patients),替代人類做人體臨床試驗,比一般試驗更快更安全;(4)空間計算(Spatial Computing)以強化虛擬生活和現實的連結;(5)數位醫療(Digital Medicine)應用程式之發展可以診斷甚至治癒疾病;(6)電動飛航(Electric Aviation)裝置,例如電動推進器可以清除直接碳排放(direct carbon emissions),減少九成的燃料成本、五成維護成本和七成噪音汙染,降低整體航空旅程環境污染並提高效率;(7)低碳水泥(Lower-Carbon Cement)的發展作為氣候變遷下的新興建築材料;(8)量子感測(Quantum Sensing)做為高精準度計算方式,將於未來三到五年進入市場,並首重用於醫療和國防應用產業上;(9)新興零碳能源如綠氫(Green Hydrogen),可補充風力和太陽能;(10)全基因合成(Whole-Genome Synthesis)作為下一代細胞工程(cell engineering)尖端科技,使未來醫學得以治癒更多遺傳疾病。 報告中指出,雖然這些新興技術具有改變社會和產業的潛力,但卻無法確保技術本身是否能被妥善使用(Good is not guaranteed)。首先,這些技術仍需要龐大資金以達到成熟度和可利用的價格點(price point),才能與相關產業達成整合化、規模化。此外面對這些新興科技,決策者必須迅速針對可能引發的風險提出對應策略,例如數位醫療在手機應用程式上會引發政府許可、資料利用、隱私等問題。因此,政策與產業如何協作,使用相關科技、限制濫用並控制技術中風險等,是面對是類新興科技應積極考量的方向。