因為生物科技(Biotechnology)、奈米科技(Nanotechnology)、微(奈)米電子與半導體(Micro- and nanoelectronics, including semiconductor)、光電(Photonics)、及先進材料(Advanced materials)等五大科技,能夠被廣泛的應用在各種產業上,並可協助現有科技作出重大的改善,故在2009年9月歐盟委員會(European Commission)所公布的一份溝通文件(Communication)當中,被認定為是可以加強競爭力,並協助經濟永續發展的關鍵促成技術(Key Enabling Technologies, KETs)。 在該份名為「為我們的未來做準備:發展歐洲關鍵促成技術促進總策略」(Preparing for our future: developing a common strategy for key enabling technologies in the EU)的文件中,歐盟委員會指出,KETs的技術外溢效益和其所能產生的加成效果,可以同時提昇其他領域的表現,如通訊技術、鋼鐵、醫療器材、汽車、及航太等領域,故將對歐盟地區未來的經濟永續發展有著重大的影響,也可以協助面對社會與環境的重大挑戰。 該文件指出,雖然歐盟擁有許多KETs的相關研發成果,對促進研發成果產業化之措施卻有所不足。在此溝通文件中所規劃的發展策略,配合歐盟持續的在研發作出更多的投資,將會協助歐盟充分應用這些可提高歐盟未來競爭力的KETs。 因為KETs的推展須注意系統性的相關聯性,所以數個不同的政策必需被同時考慮。在溝通文件中提出了十項應被考慮的面向,包括(1)將研發政策專注於KETs;(2)促進境內產學研單位間以及產業供應鏈間的技術移轉;(3)促進歐盟與會員國間發展共同的策略方案和操作專案;(4)運用各會員國境內之補助政策;(5)結合KETs的應用與氣候變遷政策;(6)創造市場需求並配合公共採購;(7)與國際間高科技政策相比較並加強國際合作;(8)透過雙邊或多邊貿易談判創造KETs有利的貿易條件;(9)促進歐洲投資銀行(European Investment Bank, EIB)給予高科技產業優惠貸款;以及(10)透過高等教育與在職訓練提昇技術水準。 歐盟委員會將會建立一個獨立的高階專家團體,去繪製歐盟有關各KETs的長期策略藍圖,並將於2010年年底向部長會議(Council of Ministers)報告。
歐盟對其成員國、其他歐洲國家以及區域鄰國的創新績效進行比較分析並公布2017年歐洲創新計分板報告於2017年6月20日,歐盟對於歐盟成員國、其他歐洲國家以及區域鄰國的創新績效進行比較分析,並發布2017年度歐洲創新記分板(European Innovation Scoreboard, EIS)年度報告。它涵蓋歐盟成員國以及冰島、以色列、前南斯拉夫的馬其頓共和國、挪威、塞爾維亞、瑞士、土耳其和烏克蘭。在全球少數指標中,EIS也對澳大利亞、巴西、加拿大、中國、印度、日本、俄羅斯、南非、韓國及美國進行了評估。 EIS 2017排名與以前的版本不同,EIS 2017的測量框架由27個指標組成,區分4個主要類別的10個創新層面: 政策框架是創新績效的主要驅動力,涵蓋3個創新層面:人力資源、有吸引力的研究體系及創新環境。 投資包括公共及私人投資研究與創新,區分外部融資支持及內部資源投資。 創新活動吸取公司層面的創新工作,涵蓋3個方面:創新者、中間者及智慧財產權。 創新如何轉化為整體經濟效益之影響力:就業影響及銷售效應。 EIS顯示歐盟的創新績效繼續增長,特別是由於人力資源的改善、創新型環境、自有資源投資以及有吸引力的研究體系。而瑞典仍然是歐盟創新領導者,其次是丹麥、芬蘭、荷蘭、英國以及德國,創新指數比歐盟平均值高出百分之二十。立陶宛、馬爾他共和國、英國、荷蘭以及奧地利則是增長速度最快的創新者。在全球創新比較中,歐盟僅次於加拿大及美國,但韓國及日本正急起直追,而中國在國際競爭中是發展最快的國家。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
政府資訊加值利用與管理法制研究:以美國及英國為例