化學奈米 將改善人類生活

  為勾勒人類未來生活型態,英國將在新堡( New Castle )投入約新台幣 150 億元建立一科學城,預定五年內整合化學、奈米、微機電及醫療技術整合。這座科學城是一座整合科學及產業技術的場所,由業界及政府共同支持,科學城內將成立三大研究機構,分別進行幹細胞研究、老年人健康、分子工程,及環境能源的改善。


  英國皇家工程院院士雷蒙奧立佛( Raymond Oliver F.R.Eng )是這座科學城的主要規劃人,他指出,人類生活在下一個 20 年將出現四項結構性的現象:一是人口老化,二是個人化產品的普及,三是智慧型生活空間的出現,四是再生能源出現。面對這四大現象的普及,化工業者可以找到兩個發展方向,一是利用化學來提高醫療生活品質;二是利用化學來創造更自然的智慧型生活空間。


  以醫療生活品質而言,化學可以進一步和幹細胞研究結合,並透過奈米技術發展出奈米級醫療電子產品,包括影像攝影取代藥物的人體臨床實驗,或是透過紅外線體外照射,讓硫化鎘等化學藥物能在體內直接殺死癌細胞 在奈米材料方面,雷蒙指出,已有廠商研究出適合老人駕駛的汽車,這類汽車從空調、氣味,到生理資訊的偵測,都能配合老人較易疲勞的體質去設計。

相關連結
※ 化學奈米 將改善人類生活, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=490&no=55&tp=1 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
中國發布《個人信息保護合規審計辦法》,明確企業個資審計責任

中國國家互聯網信息辦公室於2025年2月12日公布《個人信息保護合規審計管理辦法》(下稱《辦法》)及其配套指引,自2025年5月1日正式實施。《辦法》及指引的發布,旨在落實《個人信息保護法》中的稽核規定,完善個資合規監督架構,為企業提供執行審計的制度依據。 《辦法》區分合規審計為兩大形式:企業可自行或委託專業機構定期進行審計;另當主管機關發現高風險處理活動或發生重大資料外洩事件時,有權要求企業限期完成外部審計,並提交報告。針對處理規模較大的企業,《辦法》特別規定,凡處理超過1,000萬人個資的業者,須至少每兩年完成一次審計。 針對大規模蒐用個資企業,《辦法》亦強化其配合責任,對於處理超過100萬人資料的企業,須設置個資保護負責人;對大型平台服務業者,則須成立主要由外部人員主導的獨立監督機構,以確保審計客觀性。 在審計執行層面,《辦法》對第三方審計機構的條件、獨立性與保密義務提出具體要求,並禁止將合規審計轉委託,防堵審計品質不一,或個資分享過程增加外洩風險。同時,也規範同一機構或審計負責人不得連續三次審計同一對象,以強化審計公正性。 《合規審計指引》進一步列出具體審查項目,包括處理合法性、告知義務、資料共享、敏感及未成年個資保護、境外傳輸、自動化決策與安全措施等,協助企業全面落實個資合規審查。

何謂「三螺旋理論」

  三螺旋理論,又稱三螺旋創新模型理論(Triple Helix Theory),主要研究大學、產業以及政府以知識經濟為背景之創新系統中之型態關係,由Etzknowitz與Leydesdorff於1995年首次提出。   因應知識經濟時代來臨,三螺旋理論著重於政府、學術界與產業界(即為產、官、學)三者在創新過程中互動關係的強化。該理論探討如何協調產業、政府、學界三方於知識運用和研發成果產出上的合作;當社會動態產生改變,過去單一強大的領域將不足以帶動創新活動,推動創新也非單一方的責任,此時產業、政府、學界的三螺旋互動便隨之發生:大學透過創新育成機構孕育企業創新,而產業則扮演將研發成果商業化之要角,政府則透過研發相關政策、計畫或法規制定,鼓勵企業和大學間研究發展合作。   有別於早期經濟合作暨發展組織(OECD)將「產業」作為主要研發創新主體,三螺旋理論更重視產業、政府、學界三大主體均衡發展,三方主體各自獨立發展,且同時與其他方維持相互協力合作,共同推進經濟與社會之創新發展。   在三螺旋理論下,產、官、學因其強弱不等的互動狀態,形成不同的動態模型(例如國家干預模型、自由放任模型、平衡配置模型等等),這些動態模型被認為是產生創新的主要動力來源,對未來新知識和科技創造與擴散的能力以及績效具有決定性的影響力。

何謂「美國創新戰略」?

  美國創新戰略(Strategy for American Innovation)係美國經濟委員會(National Economic Council,NEC)及白宮科技政策辦公室(Office of Science and Technology Policy,OSTP)於2009年9月所提出的重要科研指導政策,為美國近年調整科研發展之依據,曾分別於2011年2月及2015年10月配合時事增補最新內容。該政策主要在說明美國政府、國民與企業應如何共同努力進行全面性的創新,強化長期的經濟成長;在此基礎上發展對於美國產業發展具有優先重要性的技術領域。最初提出時內容包括:1.美國創新基石之投資;2.促進以市場為導向的創新;3.以及針對國家需求的優先順位催化重要的科技突破。   白宮在2011年4月進一步提出一些重要的創新促進新機制,包括改革專利制度、重視數位教育以及基礎科學教育的強化、加速發展再生能源、提振美國創業精神(entrepreneurship)等。隨著政策的逐步推行,2015年10月公布之最新版本,內容包括:1.投資創新基石;2.刺激私部門進行創新活動,並研議租稅優惠永久制度化;3.營造一個創新者國家,改善創業環境,協助更多創新者成功創業。並且在政府機關間強調創新,另著重於從私部門的根本改變其活動和行為模式,提升創新層次才能確實將創新成果在產業間創造出來。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP