德國聯邦內閣於2015年5月27日提出安全數位通訊及醫療應用法(Entwurf eines Gesetzes für sichere digitale Kommunikation und Anwendungen im Gesundheitswesen, E-Health-Gesetz)草案。 德國聯邦衛生部部長說明因草案的形成一直有所爭議,以致過程冗長。而為了保證大量數據的資料維護及安全,德國資料保護及資訊流通之主管機關聯邦資料保護官(Bundesbeauftragten für den Datenschutz und die Informationsfreiheit, BfDI)及聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI),從一開始即密切參與其中合作。針對電子健保卡(die elektronische Gesundheitskarte)的資訊安全要求,德國聯邦衛生部將關注科技發展,持續更新相關規定。 本法案包括高安全標準之數位設施的建置期程,以及產生病人具體應用效益的時間規劃表,重要規定如下: 1.主檔資料管理(Stammdatenmanagement):被保險人主檔資料(Versichertenstammdaten)的測試及更新,自2016年7月1日起,於兩年內針對全國區域進行大範圍測試。 2.結合病人的緊急資訊(Notfalldaten):醫生能立即取得所有重要資訊,如過敏或過去病史等資料。當病人有該等需求之意願時,自2018年起健保卡即應包含緊急資訊。 3.藥物治療計畫(Medikationsplan):包含病人使用藥物治療的所有資訊,藥物治療計畫能於治療過程中使病人更加安全。而同時最少使用三種藥物的被保險人,自2016年起應採行藥物治療計畫。之後應可於電子健保卡取得藥物治療計畫相關資訊。 4.以電子方式發送醫療診斷報告(Arztbriefe):因目前為止醫療診斷報告仍係透過郵寄,然而為求重要資訊立即呈現,於2016年及2017年醫生以電子方式安全寄送診斷報告者,每份報告應收取55歐分的費用。 5.遠距醫療(Telemedizin):為推動遠距醫療的利用,自2017年4月1日起遠端傳輸X光照(Röntgenaufnahmen)的醫療診斷結果將收取費用。 6.醫療資訊系統的互通性:建立互通性指引(Interoperabilitätsverzeichnis)應可使醫療方面各類資訊系統所採行的標準透明化,且可使其規範更加標準化。而該指引應包含遠距醫療應用資料入口網站(Informationsportal)。 7.本法案所提期程,特別係針對實施的代表性自治組織(Organisationen der Selbstverwaltung),德國聯邦法定健康保險總會(GKV-Spitzenverband)、聯邦特約醫師協會(Kassenärztliche Bundesvereinigung)及聯邦特約牙醫協會(Kassenzahnärztliche Bundesvereinigung)適用。
美國21世紀醫療法最終規則下之資訊封鎖條文生效,患者健康資料進用權利獲保障美國國家衛生資訊科技協調辦公室(The Office of the National Coordination for Health Information Technology, ONC)於2020年5月公告的「資訊封鎖最終規則(Information Blocking Final Rule)」,於2021年4月5日正式生效。 ONC依21世紀醫療法(21st Century Cure Act)授權,制定有「21世紀醫療法:協同操作性、資訊封鎖與ONC健康IT認證計畫」(21st Century Cures Act: Interoperability, Information Blocking, and the ONC Health IT Certification Program)最終規則,包含各面向關於新興醫療IT技術之規範,其中特別針對資訊封鎖的相關條文,又稱為「資訊封鎖最終規則」。 21世紀醫療法為了確保病患資料近用權利,在法條中明定禁止資訊封鎖行為。「資訊封鎖」,根據資訊封鎖最終規則的定義,是指健康照護業者或健康資訊技術廠商,包括受認證的健康資訊技術(health IT)、健康資料交換 (health information exchange)或健康資料網絡(health information network),在欠缺法律授權或非屬美國公共衛生服務部(Health and Human Service, HHS)認定合理且必要的情況下,所為之干擾、防止或嚴重阻礙電子健康資料(Electronic Health Information, EHI)獲取、交換及使用行為。但以下八種情況,不適用資訊封鎖最終規則:預防傷害(Preventing Harm)、隱私(Privacy)、安全(Security)、不可行性(Infeasibility) 健康IT性能(Health IT Performance)、內容與方式(Content and Manner)、費用(Fees)、授權(Licensing)。 21世紀醫療法在資訊封鎖章節中規定,資訊封鎖相關條文在資訊封鎖例外類型被定義出來後,始生效力。換言之,在資訊封鎖最終規則生效後,病患將有權依法近用其電子健康資料,資料持有者原則上不得拒絕。值得注意的是,資訊封鎖最終規則生效後至2022年10月6日止,適用資訊封鎖條文的電子健康資料範圍,係以美國協同操作核心資料(United States Core Data for Interoperability, USCDI)中所定義之電子健康資料為準。USCDI,是由ONC主導建立的一套資料標準格式,以統一健康資料交換格式,促進資料流通。2022年10月6日起,資訊封鎖最終規則所指的電子健康資料範圍將不僅只局限於USCDI標準所定義之電子健康資料,將擴及健康保險流通與責任法(Health Insurance Portability and Accountability Act, HIPAA)所定義的所有電子健康資料。
澳洲法院判決BRCA1基因專利部分無效澳洲高等法院(澳洲的最高司法機關)在10月7日時做出重要判決,認為單純從人類基因體分離出來的基因序列,不足以作為專利的申請標的。本案的原告是一名69歲曾罹患乳癌的女士,他向法院起訴請求法院宣告Myriad 基因公司所擁有的BRCA1基因專利中部分的專利範圍(claim)無效。BRCA1基因的突變(mutation)或特定的表型被認為與乳癌及卵巢癌的發生機率有關。在先前的審級,法院都判決被告勝訴,但高等法院推翻了先前的見解,以7票贊成0票反對的比數\判決原告的上訴有理由,Myriad基因公司的專利無效。本案由首席法官連同其餘三位法官提出多數意見,另外有兩份協同意見。 本案的主要爭點在於系爭專利是否符合澳洲1990年專利法(Patents Act 1990)中,對專利應屬於一種「生產方式」(manner of manufacture)的規定。多數意見認為系爭的專利範圍只是BRCA1基因的序列,這些資訊並非由人類所「製造」,而僅是由人類所辨別。因此這無法被視為是一種生產的方式,不符合專利法的相關要求。若要將其視為生產方式,則需要進一步擴張生產方式的概念範圍,不適合由法院進行判斷。同時法院認為這個專利可能造成寒蟬效應,使得與BRCA1相關的分離技術變得過於昂貴或形成事實上的壟斷狀態,也與專利法希望促進發明的初衷不符。最後,法院在確認澳洲對於是否應承認此類專利並無國際法上的義務後,宣告此專利無效。 澳洲的學界對此判決表示歡迎,認為此判決將使醫療人員執行職務時免於侵犯智慧財產權的恐懼。但澳洲的生技產業則認為這個判決可能會打擊相關的研究,造成負面影響。澳洲法院的判決與美國先前的判決見解相當類似,同時該判決也可能對於其他國家的類似案件發生影響。例如在加拿大的一個與罕見心臟疾病基因有關的官司,就很可能會受到本判決的影響也宣布該基因專利無效。
法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。