Apple Inc.成功取得一個防竊安全系統的專利權,該系統能簡單地藉由偵測外界環境而防止筆記型電腦、電話以及其他可攜式電子裝置遭竊。 於原始申請案中,申請人提到了許多竊案皆提供了某些非偶然的移動線索,例如快速且持續的移動。因此,藉由分析該裝置於一段期間內的移動,該防竊系統應可辨別出竊盜或合法使用者。因此,當使用者暫時離開時,他們能放心地將可攜式電子裝置留下,而不需要加裝纜線鎖或其它物理性安全裝置。 根據該專利,此防竊系統包含加速規(accelerometer)以及相對應的軟體。加速規可在某些位置或震動情況下自動傳送一訊號至該裝置核心的硬體,致使其觸發聲音或影像警報。此外,該裝置也能完全被鎖住,並且需要一組密碼使其回復到正常使用狀態。 雖然Apple很小心地避免在說明前述機制時指明特定的應用硬體,但藉由該專利說明書的描述,可以很清楚的了解Apple的構想是將該防竊系統安裝在iPod上。當然,手機以及筆記型電腦也是安裝該防竊系統的顯著標的。
美國環保署擬針對兩項奈米材料納入顯著新種使用規則奈米材質之特性雖有助於開發新穎產品,但對於環境與人體健康是否會造成危害,迄今仍未有定見;為避免奈米科技毫無節制地發展,2008年9月以降,美國環保署(Environmental Protection Agency,EPA)以毒性物質管制法(Toxic Substances Control Act,TSCA)管理奈米材料,並在10月底考慮將奈米碳管納入前述法規中;11月初,更進一步依據毒性物質管制法5(a)(2)發布「顯著新種使用規則(Significant New Use Rule,SNUR)」,將以矽氧烷(siloxane)所改造之奈米矽微粒(silica nanoparticles)與奈米鋁微粒(alumina nanoparticles)列入管理範圍內。 一般而言,化學物質如未列於由EPA所公佈之「化學物質目錄」者,皆應向環保署提出製造前通知(Premanufacture Notice,PMN);而顯著新種使用規則以指定特殊新種化學物質的方式,配合適用製造前通知制度,要求業界針對製造、加工、銷售與使用等過程,提出具體因應措施。申言之,關於前述兩項奈米物質,一旦涉及有別於以往的重大創新製造活動,業者即應於正式進行製造前之90天先行通報環保署,再由其評估該業者是否符合相關條件要求,否則得予以禁止或限制之。 根據環保署既有之測試資料,可以確認奈米微粒得由呼吸與皮膚接觸等方式進入人體。以矽氧烷所改造之奈米矽及奈米鋁,泰半係作為添加劑之用;然而,觀察過往製造前通知所登載之內容,該兩項化學物質無論在呼吸或皮膚接觸所造成之暴露程度尚屬輕微;因此,針對該等奈米材料而向環保署所為之通報流程及審查作業,可能會對於業者後續之生產製造活動形成不確定的阻礙。 有鑒於奈米材料可能對人體健康產生未知風險,為保障奈米工作環境中人員的安全,顯著新種使用規則將於2009年1月起正式生效,作為管理特殊化學物質的監督方式。對於製造或使用奈米材料所可能引發之風險,美國環保署正著眼於環境、健康與安全議題,逐漸採取較為謹慎的政策設計方向,以維護大眾利益。
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。