智慧財產權議題涉及專利、著作權和商業機密,近年來因開放原始碼軟體而備受矚目。開放原始碼軟體可共享、修改和重新發布,和傳統專屬軟體的保密性和發布限制迥然不同。
許多開放原始碼與自由軟體倡議人士都痛批軟體專利,相形之下,惠普以擁有大量的專利為傲。2004年惠普一共獲頒1,775項美國專利,在美國排名第四。
惠普Linux負責人表示,開放原始碼程式設計師或許厭惡軟體專利的概念,但最好還是試著自我調適,因為軟體專利是不會消失的。且開放原始碼軟體是在著作權法的基礎上發展而成的,而專利比較麻煩,是因為程式設計師把專利視為削弱他們的自由。另一方面,企業則把專利看待成自家珍貴創意的保護傘。
惠普Linux副總裁Martin Fink批評開放原始碼促進會(Open Source Initiative;OSI)核准開放原始碼授權證書的作法太草率。去年8月,Fink曾指出,開放原始碼授權證書多達52種,實在太多了。現在數目變得更多,因為他抱怨OSI核准任何符合開放原始碼定義的申請案,卻不試著加以整併以強化開放原始碼業的基礎。只基於符合規格就核准授權證書,而未顧及進一步鞏固開放原始碼經營模式的能力,這會構成明顯而迫切的危險。
一家銷售智財權法律免責保險的公司說,調查顯示,Linux作業系統的核心(kernel)可能涉及283項專利侵權。惠普2002年也提醒眾人,微軟可能醞釀對開放原始碼軟體提出專利訴訟。但目前為止這些威脅尚未發生,而紅帽公司(Red Hat)和Novell揚言運用自家專利反制那類威脅,IBM和昇陽也表明不會針對開放原始碼侵犯的數百項專利提出告訴。
本文為「經濟部產業技術司科技專案成果」
從美國政府責任署建議國防部應改善其處理智慧財產的方式初探美國國防部之智財管理 資訊工業策進會科技法律研究所 2022年2月15日 根據美國政府責任署(U.S. Government Accountability Office,下稱GOA)於去(2021)年12月發布的報告指出,美國國防部(U.S. Department of Defense,下稱DOD)對智慧財產的管理能力不足,可能降低任務準備程度並導致維運軍武的成本飆升[1]。本文將簡介GOA報告的發現,聚焦於DOD的智財管理情況,藉此一窺美國國防部的智財管理模式。 壹、事件摘要 美國國會於2018年通過《國防授權法案》(National Defense Authorization Act,簡稱NDAA),裁示DOD建立智財取得及授權政策,DOD據此訂定其智財指令、規劃智財權責單位、人員及相關培訓機制,嗣後國會於2021年委請GAO檢視DOD之智財指令及其執行情況。 貳、重點說明 一、DOD的智財指令 DOD依據以下智財相關法規,設定其智財指令,如:使小型企業、大學和其他非營利組織可保留其發明之專利權的《拜杜法》(Bayh-Dole Act)[2]、授予無論規模大小所有聯邦締約方全部或部分由聯邦資金所獲得的專利權之12,591號行政命令[3],以及要求DOD應訂定相關規範以解決和締約方間技術資料的相關權利之《國防採購改革法案》(Defense Procurement Reform Act)[4]等,並強調六項核心原則[5]: 1.將智慧財產權規劃整合到採購策略中,以考量對競爭力和可負擔性的長期影響。 2.確保採購專業人員具備履行公務所需的相關智財知識,以支援智財採購規劃期間內進行關鍵的跨職能協調。 3.對智財可交付成果和相關授權進行特別協商,相較標準授權能更有效地平衡DOD和產業界間的利益。 4.就預期智財和維運目標與產業界進行明確有效的溝通。 5.尊重和保護私部門和政府資助的智慧財產權。 6.政府必須確保締約方所交付之智財成果和有相應的授權。 二、GAO檢視DOD之智財指令執行結果 應國會要求,GAO對DOD的智財指令進行通盤檢視,並對智財權責單位、人員及負責培訓之機構展開調查,訪談相關人員指令的實際執行情況,其檢視結果如下: (一)DOD的智財指令不足以促進其取得智財的製程細節或處理資料權利之能力 DOD智財指令雖整合取得、授權智財的相關法規和指引等要求,並強調其核心原則,然該指令和DOD其它相關的內部指令仍未有更明確的內容可解決取得細部製程或處理資料權利的問題。DOD通常會為其新銳軍武器系統-包含電腦軟體、技術資料、用戶手冊等取得或註冊智財權,而DOD智財指令所指的技術資料,是包括任何科學或技術性質的記錄資訊,如:產品設計或維護資料和電腦軟體檔案(含:執行程式碼、開源碼、程式碼清單、設計細節、流程、流程圖等);但常未同步取得用於運行和維護武器系統的智財,如:細部製程或技術資料等[6],倘若未及早取得或獲得相關授權,可能影響軍武系統的操作和維護,從而影響武器的競爭力,並增加管理成本[7]。 實際上,GAO已接獲因技術資料取得問題而對任務有不良影響的報告:2021年7月F-35計劃因維修供應商取得的技術資料不足以滿足維護需求,使關鍵的引擎維修時間比預期的更久;2020年3月部分海軍艦艇計劃的維護作業也因缺乏技術資料出問題,而上述情況若在計畫前期就確認包含技術資料和細部製程等所需智財,並在採購過程中及早規劃取得,可因此節省後續衍生的數十億美元維護成本[8]。 (二)DOD尚未為智財人員訂定完善的策略、人員配置規劃和投注足夠的資源,以充分履行智財指令所規定的廣泛職責 根據GOA的調查與訪談相關人員,智財人員在以下情況都面臨不確定性: 1.資金和人員配置 DOD目前計劃在2023財會年度前,為智財主任及其在國防部長辦公室(Office of the Secretary of Defense,下稱OSD)的團隊提供五個職位的資金,但其中四個為臨時職位,這可能在招聘人才的過程中造成反效果,不利於未來的人員配置。 2.連結其他計劃專家支援不足之處 OSD的智財人員希望DOD中其他計畫的智財專家庫能提供支援,協助訂定智財策略並與承包商進行談判等事宜,但DOD尚未針對 OSD智財團隊將如何和其他專家合作提出具體作法。 3.專業知識 DOD的智財指令指出智財人員應該具備:採購、擬定契約、工程學、法律、後勤、財務分析以及估值等領域的專業知識,但受訪談的人員表示,該部門目前在智財權估值和財務分析這兩個關鍵領域仍有不足,仍須進行補強[9]。 (三)智財培訓涵蓋多項活動但未安排優先順序,且未具體確定哪些人員應該接受培訓 DOD的智財培訓由其設立的美國國防武獲大學(Defense Acquisition University,又譯為國防軍需大學,下稱 DAU)執行,該大學專為國防相關之政府人員、承包商提供採購、技術和後勤等專業培訓[10]。為改善智財培訓,DAU展開為5年期的智財策略計畫,計有60多項活動待執行,但該策略計劃缺乏重點,沒有排出活動的優先順序,也未具體提出DOD的哪些智財人員應該接受培訓[11]。 (四)DOD須致力發展追蹤已取得/授權智財之後續使用情況的能力 DOD目前的智財指令指示相關政府單位須管理智財相關的契約及智財文件,以避免在採購智財及其相關授權時重複採購,或隨時間流逝而喪失智財權,然而根據訪談結果,相關人員表示DOD採購極大量的智財或相關授權,但不具備追蹤各個智財獲授權使用情形的能力[12]。 三、GAO對DOD的建議 GAO彙整其檢視DOD智財指令執行情況的結果後,對DOD提出下列四個建議[13],建議內容不外乎是指定與智財管理相關的重要項目須指定負責人,且該負責人須為對應智財相關單位的較高管理階層,確保待改善項目有監督與執行者。 (一)完善智財指南 採購及維護次長(The Under Secretary of Defense for Acquisition and Sustainment)應確保DOD智財指南已闡明DOD人員將如何取得細部製程或技術資料。 (二)確保跨部門合作與資源連結 國防部長(The Secretary of Defense)應確保部長辦公室和各部門所需的合作、人員配置和資源,以連結各計畫智財相關專家、人員。 (三)確認智財活動優先順序 採購助理部長(Assistant Secretary of Defense for Acquisition)應確保智財主任(Director of the IP Cadre)與DAU主席合作,為DAU在2023年至2025年間主責與智財相關活動確定優先順序。 (四)確保智財培訓效益 採購助理部長(Assistant Secretary of Defense for Acquisition)應確保智財主任訂定補充指引,以協助部門負責人和採購職業管理主任(Director of Acquisition Career Management,DACM)確定國防部人員在關鍵專業領域接受之智財培訓和取得的證書能使其有最大的獲益。 參、事件評析 綜觀GAO的檢視結果,雖然DOD的智財管理仍有改善空間,但以足見美國聯邦政府對其智財管理之重視程度,不僅指示部會自行管理智財,更透過部會外的公正單位,從規範到組織實際執行情況進行通盤檢視;而部會內部對於智財管理的程度,已經從訂定和整合智財相關規範,進一步到落實在日常任務中,不只重視部會所需技術本身的智財取得或保護,更欲推進到策略計劃前期,將維護軍武相關的細部製程和技術資料等相關內容及權利也納入採購範圍,甚至為此盤點智財所需的專業能力、規劃培訓專門人員,以促進智財管理的量能,其對智財管理深化及重視的程度值得我國借鏡。 [1] GAO, Defense Acquisitions: DOD Should Take Additional Actions to Improve How It Approaches Intellectual Property, (Nov. 30, 2021), available at https://www.gao.gov/products/gao-22-104752 (last visited Feb. 7, 2022) [2] The Patent and Trademark Law Amendments Act of 1980 (Bayh-Dole Act), 35 U.S.C.§§ 200–211, 301–307. [3] President’s Memorandum to the Heads of the Executive Departments and Agencies,Government Patent Policy (Feb. 18, 1983); Exec. Order No. 12,591, § 1(b)(4), 52 Fed. Reg. 13,414 (Apr. 10, 1987) [4] Defense Procurement Reform Act, 1984, Pub. L. No. 98-525, § 1201. [5] Supra note 1, 17-18. [6] Id., 7, footnote 21. [7] Id., 1. [8] Id., 1. [9] Id., 24-28. [10] DAU, About DAU, at https://www.dau.edu/about (last visited Feb., 7, 2022) [11] Id., 29-30. [12] Id., 32-33. [13] Id., 33-34.
加拿大運輸部發布2025無人機方案,提出建立無人機交管系統等優先項目加拿大運輸部(Transport Canada)於2021年3月22日發布「2025無人機方案」(Transport Canada’s Drone Strategy to 2025),概述其對無人機的願景及方案,並提出其至2025年前所應優先關注之項目,以確保無人機安全地整合進現代化航空系統並進入空域中。 為因應無人機產業發展帶來新挑戰及機會,加拿大運輸部列出五點事項做為對總體政策及優先事項之考量,包括: (一)透過安全規範支持創新:相關方案包含為偏鄉地區操作較低風險之視距外操作制定規範、為中度風險視距外操作核發飛行操作許可、在實際操作環境中測試技術,以及核准相關試行計畫,以提供中度風險之視距外操作更多的政策規劃資訊。 (二)建立無人機交通管理系統:包括建立無人機飛行計畫、空域使用請求系統、通訊、導航及空域監管系統、自2021年於偏鄉地區進行無人機交通管理實驗、探索「數位牌照」(digital license plate)用於遠端識別無人機的選項,以作為無人機交通管理系統基礎。 (三)無人機的安全風險:與利益相關人合作釐清機場保安的角色與職責、通訊傳輸協定及突發事件回應期間的工作協調、評估機場威脅及漏洞以了解風險、探索反無人機技術、對未經授權無人機的侵入進行偵測及追踪,以及導入驅逐未經授權無人機的安全框架。 (四)創新推動經濟發展:促進短、中期研發計畫、對先進無人機研發活動尋求合作機會、尋求能為加拿大氣候環境與操作提供資料的優先研發項目、制定方案使新型無人機技術更容易被國際市場接受、針對無人機之營運框架及產業目標進行評估、擬定產業合作策略並促進現有航空經濟框架現代化。 (五)建立民眾對無人機的信任:為增進民眾對無人機的認識及接受度,制定行動計畫、與地方政府共同規劃營運、鼓勵更多的社群參與,並與執法單位持續合作執行安全無人機操作規則。 加拿大運輸部將對本方案定期進行評估並於2025年前完成總體檢視,並公布2025-2030年的無人機發展方案。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
從美國PayPal經驗與歐盟支付服務指令論我國第三方支付服務之現狀與未來