由英國政府所資助成立的一項計畫,希望透過開放原始碼廠商目錄及程式碼資料庫的建立等措施,加速公家單位對開放原始碼軟體的採用。這項名為「開放原始碼學院」( Open Source Academy )的計畫,是由副首相辦公室( Office of the Deputy Prime Minister )的電子創新投資計畫所贊助,預計在本月內將正式宣佈。
參與該計畫的開放原始碼協會( Open Source Consortium )執行總監表示,英國的公家機關在開放原始碼的採用上落後於歐洲各國,而這項計畫將改變目前的現況。地方政府已經可以透過網站開始分享程式碼,例如「地方政府軟體協會」( Local Authority Software Consortium )的網站。這項計畫裡的其他專案還包括了政府機構的入口網站計畫,可藉以尋找開放原始碼供應商的資訊;以及開放原始碼顧問的專業鑑定模式。
本文為「經濟部產業技術司科技專案成果」
延續過去兩年針對全國寬頻網路服務進行檢視,FCC在2013年2月公布第三次「美國寬頻測量報告」(Measuring Broadband America)。這份報告有別於過去,將受測技術從DSL、有線電視與光纖,涵蓋至衛星寬頻,使資訊更加多元。此外,網路服務供應商(Internet Service Provider,ISP)在今年尖峰時段(工作日晚間7點至9點)提供寬頻實際速度與網速的契合率達97%,而較2011、2012年進步,因此,這份報告的另一個重點,便是提出寬頻速度與廣告相符的三大關鍵: 1.ISP業者盡力改善網路效能(Network Performance),而非調降牌告價(Speed Tiers )。 2.民眾接納更快速的網路意願,更甚過往。FCC指出,消費者訂閱網速的層級,逐漸從每秒14.3Mbps ,發展至15.6 Mbps。至於,使用網速低於1Mbps、或是1Mbps到3Mbps的民眾,近年也逐步採用更高速的網路。 3.衛星寬頻的進步:雖然,衛星技術在傳輸上仍有延遲的缺陷,但是,有近90%的民眾於尖峰時段,得到超過業者寬頻廣告速度的140%(業者宣稱具有12Mbps),使消費者感受不出網路尖峰期。 為使2015年實現50Mbps寬頻網路具有1億家戶可連結,美國逐步發展國家寬頻計畫(National Broadband Plan,NBP)。FCC避免寬頻廣告速度與實際速度不符影響NBP發展,未來將要求ISP業者對於網路牌告負起責任(Accountability),藉此增加市場競爭性與提高資訊透明度。以「美國寬頻測量報告」為例,藉由委員會、產業與其他利益相關人合作的方式,促進資訊的透明,使消費者在取得訊息後,有能力做出正確的決定,便是一種提高透明度的方式。 雖然,FCC認為寬頻網路進步與民眾採納較高速的網路,對於市場發展是一項利多,但部分輿論卻認為這與2011年12月31日FCC網路接取報告(Internet Access Report)結論相距甚遠。根據報告顯示,美國有高達42%的民眾下載速度不到3 Mbps、上傳速度不到769 kbps,而這與「美國寬頻測量報告」結果,確實大相逕庭。無論如何,可以窺見FCC視民眾使用意願與網路基礎建設同等重要,因此,如何增加消費者選擇較高速的網路,將是市場未來發展的關鍵。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
日本學術會議建議因應疫情強化ICT建設和推動數位轉型日本學術會議於2020年9月15日提出「邁向感染症對策與社會改革之ICT基礎建設強化和數位轉型推動」(感染症対策と社会変革に向けたICT基盤強化とデジタル変革の推進)法制建議。新冠肺炎疫情突顯出日本ICT基礎建設不足和急需數位轉型之問題,日本學術會議從「醫療系統之數位轉型」、「社會生活之數位轉型」和「資安與隱私保護」等觀點提出建議,希望能在確保資安及隱私的前提下,達到防止感染擴大與避免醫療崩壞,以及減少疫情對社會經濟影響等目標。針對「醫療系統之數位轉型」,未來應建立預防和控制感染症之綜合平台,統一地方政府感染資訊之公開內容、項目,檢討遠距醫療和數位治療法規,進行相關法制環境和基礎設施之整備;針對「社會生活之數位轉型」,日後應積極推動遠距醫療、遠距工作和遠距教育,並進行所需基礎建設、設備和人才培育之整備;針對「資安與隱私保護」,除檢討建立利用感染者個人資料,以及可知悉個人資料利用狀況之制度,亦應擴大及強化信用服務(trust service)和感染資訊共享系統等措施。