歐盟將通過新的指令加強科學研究所中所使用之動物的保護

  2010年9月歐洲議會通過第2010/63/EU號指令(DIRECTIVE 2010/63/EU)修正文本,新的指令將修正第86/609/EEC 指令(Directive 86/609/EEC)原有規定,以加強對科學實驗用動物的保護。
  2010年5月世界動物健康組織(the World Organisation for Animal Health, OIE)第78屆 大會中通過了第一個國際動物福祉標準,該標準納入OIE陸棲動物健康法典規範(OIE Terrestrial Animal Health Code)做為研究與教育用動物保護的準則,歐盟作為主要的提案者於是加速規範修正作業以回應OIE之承諾。新指令將規定歐盟各國主管機關必須在同意研究採用動物實驗前,評估其他研究方式的可能性並進行倫理評估,如需採用動物實驗應儘可能減少被試驗動物之痛楚,此外新指令也確保被實驗動物享有應有的生存環境,如適當大小的籠子等的要求。
  新指令適用範圍將包括教育、訓練與基礎研究用的動物,其包含所有人類以外的活體脊椎動物以及某些可能感受痛楚的物種。靈長類動物如人猿的實驗也被禁止,除非為了該物種本身之生存所需,或者其他可能造成人類生存威脅或疾病之避免所必要方得於各國政府同意下進行之。新的指令將擴大禁止使用人猿、黑猩猩、彌猴等靈長類動物的實驗,除非有證據顯示其他物種的實驗無以達成靈長類動物實驗所能達成之目的,但也有成員國表示擴大靈長類動物實驗的限制將對於神經退化性疾病如阿茲海默症等的研究造成阻礙。
  動物實驗的3R原則—取代、減量與改善(replacing, reducing, and refining)在第2010/63/EU號指令修正文本都已有相關規範,歐盟執委會表示歐盟將繼續致力於強化實驗用動物的福祉,同時為了確保新法的貫徹,新指令將授權設立歐盟層級的示範實驗室(Reference Laboratory at European Union level)協調各國採取替代動物實驗的方式。歐盟執委會表示新的指令將會在今年秋天公布。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 歐盟將通過新的指令加強科學研究所中所使用之動物的保護, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5295&no=55&tp=1 (最後瀏覽日:2025/12/10)
引註此篇文章
你可能還會想看
客戶機密資料外洩事件頻傳 美國AT&T 8月底也被駭

  美國資安事件頻傳,美國 8/30 驚傳電信及電報公司( AT & T )購物網站中之顧客消費資料遭駭客竊取事件。 AT & T 發言人表示工程師在發現異狀後一個小時內關閉該網站並已採取相關保護措施,據 AT & T 估計約 1 萬 9 千名在該網頁上以信用卡消費的顧客機密資料已外流,目前該公司正進行通知客戶之動作,並聯繫相關信用卡公司,期能將對顧客之損害降至最低。   AT & T 通知當事人之作法,符合美國立法之趨勢。目前美國除了部分州已經通過立法要求資料持有業者必須將資料外洩事件告知當事人外,今年 7 月 19 日 Virginia 州議員 Thomas Davis 亦提出美國聯邦法典第 44 編( title 44 )修正提案,該提案通過後將強化美國聯邦法典中對於個人資料外洩時資料收集者之告知義務,以避免當事人因此蒙受損失。   雖然法規要求漸趨嚴格、完整,但長期關注隱私權問題之 Privacy Rights Clearinghouse 估計,美國自去年 2 月起至今年 8 月底止,約有 9100 萬人次之機密資料遭到竊取,換言之,約 1/3 的美國人機密資料曾遭竊取或外洩,網際網路與駭客技術的發展使得機密資料今日已不再機密了。

美國2015年「消費者隱私權法案」簡介

德國機器人和人工智慧研究

  人工智慧及機器人分為以下4種類型:首先是工廠裡的作業機器人,可自主性重複執行相同任務,例如拾取、放置、運輸物品,它們在侷限的環境中執行具體事務,而且通常是在周圍無人的圍籬區內作業,然而目前趨勢已有越來越多機器人可安全執行人機協作的任務。第二種係用在傳統製造外的專業機器人,例如:擠奶機器人、醫院手術機器人。第三種是生活中常見的消費產品機器人,常用於私人目的,例如:吸塵器機器人、割草機器人。最後是人工智慧軟體,此軟體可應用於醫療診斷輔助系統、語音助理系統中,目前越來越多人工智慧軟體結合復雜的感測器和聯網裝置,可執行較複雜之任務,例如:自動駕駛車。   德國人工智慧研究中心(Deutsche Forschungszentrum für Künstliche Intelligenz,DFKI)為非營利性公私合作夥伴(PPP)之研究機構,與歐盟,聯邦教育及研究部(BMBF)、德國聯邦經濟及能源部(BMWi),各邦和德國研究基金會(DFG)等共同致力於人工智慧之研究發展,轄下之機器人創新中心(Robotics Innovation Center,RIC)亦投入水下、太空、搜救、物流、製造業等各領域機器人之研究,未來將著重於研究成果的實際運用,以提升各領域之生產力。2016年6月,各界專家於德國聯邦議院的數位議程委員會中,呼籲立法者應注意機器人技術對經濟,勞動和社會的影響,包括技術及產品的安全標準、機器人應用之法律歸責問題、智慧財產權的歸屬與侵權問題,隱私權問題、及是否對機器人課稅等,進行相關修法監管準備。   解決台灣人口結構老化、勞動力短缺與產業競爭力等問題已是當務之急,政府為促進台灣產業轉型,欲透過智慧機械創新與物聯網技術,促使產業朝智慧化生產目標邁進。未來除需持續精進技術研發與導入產業業升級轉型外,應將人工智慧納入政策方針,並持續完備法制環境建構及提升軟實力,以確保我國技術發展得以跟上世界潮流。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP