歐盟在今年5月19日公布的數位議程(Digital Agenda)中,設定了多項寬頻建設目標,包括所有歐洲民眾於2013年均能擁有基本寬頻, 2020年擁有30Mbps以上的高速寬頻,與50%以上的歐盟家戶擁有100Mbps以上的超高速寬頻。為達成此項目標,歐盟執委會於今年9月20日提出了採納下世代網路管制建議(Commission Recommendation on regulated access to Next Generation Access Networks(NGA))、提出未來五年的無線電頻譜政策計畫,與鼓勵公、私部門進行寬頻網路投資等三項主要推動措施。
在NGA管制建議正式公布前,執委會曾於2008年與2009年兩度就建議草案進行公開資詢。執委會認為,此一建議除了可提升管制明確性,避免管制假期(regulatory holidays)外,並在鼓勵投資與維護競爭間取得適當平衡,其重要管制原則如下:
1. 管制者對於獨占業者之光纖網路接取進行成本訂價管制時,應藉由風險溢價(risk premium)充分反應投資風險,使投資者能獲取具吸引力之利潤。
2. 管制者應採取適當的接取管制措施,促使新進業者進入市場,使其可依投資階梯(ladder of investment)逐步建置其自有網路,促進基礎設施競爭。
3. 管制者所採取之事前管制措施,應反映個別市場與城鄉區域之市場競爭差異。
4. 管制建議強烈支持NGA網路的共同投資,並對長期或大量的光纖迴路接取合約,允許在一定條件下給予價格折扣。
歐盟執委會(European Commission, EC)於2022年4月13日提出欲修正歐盟「地理標示」(Geographical Indication, GI)制度之提案(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on geographical indication protection for craft and industrial products and amending Regulations (EU) 2017/1001 and (EU) 2019/1753 of the European Parliament and of the Council and Council Decision (EU) 2019/1754,下稱本提案),擬在歐盟GI制度原僅保護農產品、食品及葡萄酒、蒸餾酒產品外,新增對於工藝品和工業產品之保護。 所謂工藝品和工業產品如義大利的穆拉諾玻璃(Murano glass)、愛爾蘭的多尼戈爾花呢(Donegal tweed)和波蘭陶(Boleslawiec pottery)等,皆係源於特定地區,產品品質和相關特色皆係依於原產地技藝之原創性及傳統作法。儘管此等產品在歐洲或全世界享有不錯聲譽,其製作者一直以來卻未能享有歐盟層級GI的保護,以更可將其原產地名與聲譽、品質相連結。 本提案將使消費者更易於辨識該等產品之品質,以可在更得知產品資訊的狀況下,作出消費選擇;亦可宣傳各原產地的技術工藝,使當地技藝被保存,並創造工作機會,達到經濟成長。 本提案主要包含: (1)將工藝品和工業產品納入歐盟GI保護: 將為工藝品和工業產品建立一個橫跨全歐盟的GI保護,而非僅目前部分區域或國家所有者,以更保障製作者之智慧財產權。本提案亦將促進打擊仿冒品的行為,包含在網路上所銷售者。 (2)為工藝品和工業產品的GI制度建立經濟的註冊程序: 將建立「兩階段申請程序」,製作者先向其所屬歐盟會員國當局提出申請,再由該當局轉交符合第一階段資格者之資料至歐盟智慧財產局(European Union Intellectual Property Office, EUIPO),以進行評核。 本提案將可使製作者提出「其產品有符合原產地製作特點」的聲明,以使整體註冊程序較簡易且節省成本。 (3)與國際上其它GI保護制度相容: 本提案將使成功取得歐盟GI註冊之工藝品和工業產品製作者可在「關於保護原產地名及GI的日內瓦協定」(Geneva Act on Appellations of Origin and Geographical Indications under the World Intellectual Property Organisation (WIPO))之簽署國實施和保護其產品的權益;蓋此協定亦有包括工藝品和工業產品。而由於歐盟於2019年簽署該協定,故在歐盟境內亦將保護他簽署國工藝品和工業產品之GI。 (4)保存原產地技藝,並造就歐洲鄉村和其他地區的發展: 藉由提供製作者(尤其是中小企業)誘因,以投資於新的原創產品及創造其他利基市場(niche markets)。本提案並將使歐洲若干地區(尤其是鄉村及較低度開發區域)將失傳的技藝得以被保存,因此將可重振其知名度以吸引遊客或創造其他工作機會,達到經濟復甦。
人權組織向法國最高行政法院提交申訴,要求政府停止使用歧視性演算法.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 國際特赦組織(Amnesty International)與法國數位隱私權倡議團體La Quadrature du Net(LQDN)等組織於2024年10月15日向法國最高行政法院提交申訴,要求停止法國國家家庭津貼基金機構(Caisse nationale des allocations familiales,CNAF)所使用的歧視性風險評分演算法系統。 CNAF自2010年起即慣於使用此系統識別可能進行福利金詐欺的對象,該系統演算法對獲取家庭與住房補助的對象進行0至1之間的風險評分,分數越接近1即越可能被列入清單並受調查,政府當局並宣稱此系統將有助於提升辨識詐欺與錯誤的效率。 LQDN取得該系統的原始碼,並揭露其帶有歧視性質。該等組織說明,CNAF所使用的評分演算法自始即對社會邊緣群體如身心障礙者、單親家長,與低收入、失業、居住於弱勢地區等貧困者表現出懷疑態度,且可能蒐集與系統原先目的不相稱的資訊量,這樣的方向直接違背了人權標準,侵犯平等、非歧視與隱私等權利。 依據歐盟《人工智慧法》(Artificial Intelligence Act,下稱AIA),有兩部分規定: 1. 用於公機關評估自然人是否有資格獲得基本社會福利或服務,以及是否授予、減少、撤銷或收回此類服務的人工智慧系統;以及用於評估自然人信用或建立信用評分的人工智慧系統,應被視為高風險系統。 2. 由公機關或私人對自然人進行社會評分之人工智慧系統可能導致歧視性結果並排除特定群體,從此類人工智慧總結的社會分數可能導致自然人或其群體遭受不當連結或程度不相稱的不利待遇。因此應禁止涉及此類不可接受的評分方式,並可能導致不當結果的人工智慧系統。 然而,AIA並未針對「社會評分系統」明確定義其內涵、組成,因此人權組織同時呼籲,歐盟立法者應針對相關禁令提供具體解釋,惟無論CNAF所使用的系統為何種類型,因其所具有的歧視性,公機關皆應立即停止使用並審視其具有偏見的實務做法。
資訊揭露立場分歧:著作權集體管理團體條例修正草案著作權集體管理團體條例(集管條例)自2010年2月10日公布施行以來,終於今年(2019)5月中旬展開修法公聽會,智慧局提出三大項修法目的:「一、強化專責機關監督輔導;二、提升集管團體公信力與透明度;三、健全著作權授權市場環境。」依此分別提出修正條文。 其中,關於集管團體的財務治理透明化的規定,智慧局參考歐盟指令與德國集管條例,增訂集管團體之資產負債表、收支決算表、現金流量表等財務報表之揭露的法律義務(修正第21條第1項),且「應上網供公眾查閱」(增訂第22條第2項),係為建立集管團體公信力並強化良善治理與健全體質。 在場集管團體持不同意見,認集管團體僅係對身為會員的權利人以及利用人負責,且每年均已被主管機關與會員檢視相關報表,似無公開上網讓不特定大眾開放查閱之理。利用人則提出「重複管理」是須要被解決的議題,以授權移轉的實務問題舉例,故希望未來修新法有即時性的權利與管理的資訊揭露。權利人則反應授權金分配不透明,建議以資訊化的方式讓報酬分配機制透明化,並可應用區塊鍊技術達成之。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。