新加坡通過2010年版電子交易法施行細則

  繼新加坡2010年版本電子交易法(Electronic Transactions Act, ETA)於2010年7月1日式施行後,該國資通訊發展局(Info-communications Development Authority, IDA)因應修正電子交易法施行細則,該細則並於2010年11月1日起正式實施。其目的在使憑證機構管理制度得以配合新興資訊安全技術齊驅發展,進而使其與國際趨勢相符,修正要點如下:
  1.    修正許可制為志願許可制:此次修正最大變革即在使該國憑證機構管理制度由原本的許可制,改為志願許可制。前者係使所有憑證機構均應向主管機關申請許可後,始能對外簽發憑證;而志願許可制則是原則上憑證機構對外簽發憑證無需主管機關許可,但憑證機構如果希望所簽發之憑證具備特定法律效果,則仍須經過許可。
  2.    證據法上的推定效果:經過自願申請許可通過的憑證機構,經其所簽發之憑證而製作的數位簽章將有證據法上推定為真之效力,無待憑證用戶舉證即有其真實性,惟該真實性仍可由他方另舉反證推翻。換句話說,若數位簽章製作人使用的憑證為一般未經申請許可之憑證機構所簽發者,憑證用戶需先向法院提出其他輔助證據證明該簽章真實性。
  3.    許可申請之要求:憑證機構自願申請許可時,應繳交申請費1千元新加坡幣(下同)及2年有效之許可執照費1千元。此外,新版施行細則統一整合舊有之「安全指導手冊」(Security Guideline)及其他各項稽核規定於「稽核需求要項表」(Compliance Audit Checklist),以供憑證機構得以更便利之方式了解並遵循共通之稽核程序。

相關連結
※ 新加坡通過2010年版電子交易法施行細則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5342&no=64&tp=1 (最後瀏覽日:2025/12/06)
引註此篇文章
你可能還會想看
歐盟執委會提出ESG評鑑機構監管草案,以健全歐盟永續金融市場

歐盟執委會(European Commission, EC)於2023年6月13日發佈「環境、社會與治理(ESG)評鑑透明度與誠信的規則草案(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the transparency and integrity of Environmental, Social and Governance (ESG) rating activities,下稱本草案)」,以健全歐盟永續金融市場。 ESG評鑑係指評鑑機構向投資者和金融機構提供有關ESG的投資策略和風險管理等關鍵資訊,在歐盟永續金融市場扮演重要角色。因此本草案提出評鑑機構治理與利益衝突防免的規範,確保ESG評鑑機構誠信營運、提升評鑑的可靠性和透明度、並協助投資者作出更明智的永續投資決策。本草案要點如下: (1)授權許可:ESG評鑑機構原則上須取得歐洲證券與市場管理局(European Securities and Markets Authority, ESMA)的授權許可,始得於歐盟境內經營ESG評鑑業務。如為第三國ESG評鑑機構,則須申請取得同等認定(equivalence decision)後始得在歐盟經營ESG評鑑業務 (2)評鑑機構內部治理:要求ESG評鑑機構確保其獨立性、建立申訴處理機制、限制評鑑機構兼營金融與稽核業務等 (3)提升評鑑透明度:要求ESG評鑑機構公開揭露方法論、模型、主要假設與技術標準等 (4)授予ESMA監管權力:ESMA得要求評鑑機構與相關人士提供資料、詢問評鑑機構代表或職員、甚至實地查核等措施;就違反規定的評鑑機構,ESMA亦有要求暫停營運、課予罰鍰以及撤銷經營許可的權力

基因改造 70g胖老鼠減重成為40g

  中研院今天發表一份研究成果:利用「基因改造」,成功的將七十公克的胖老鼠減重到四十公克,而且沒有什麼副作用。未來經過人體實驗,將有機會成為人類減肥的最新方法。    研究團隊發現,脂肪細胞活性與細胞內的粒腺體含量有關,而「粒腺體」就相當於細胞的「火力發電廠」,專門幫助代謝熱量、並轉化為能量供體內使用。當脂肪細胞含有大量粒線體的時候,就可以自行代謝體內所堆積的油脂、健康瘦身。計劃主持人、分子生物研究所副研究員李英惠解釋:利用藥物刺激,可以誘發體內的一種「Gs蛋白」,在老鼠胚胎上進行基因改造,或是後天以藥物餵食老鼠,活化體內GS蛋白質,透過各種方式,証明GS蛋白質的確可以增加脂肪細胞中粒腺體含量和活性,慢慢的代謝掉細胞內堆積的油脂。研究團隊還意外發現,改造後的老鼠,不但不容易發胖,而且平均壽命還增加了20%。    目前動物實驗已經證明:體內具有這種改造過的脂肪細胞,不但不容易發胖,壽命也可以增長。未來經過人體實驗,將有可能成為人類「健康減肥」的最新方法。

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例

人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要   美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。   本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明   2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。   根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。   雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。   CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據   後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。   由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。   另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析   《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。   然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法?   根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度?   指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分?   FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語   隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。   然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017)  https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)

日本建立物聯網產品資安符合性評鑑及標籤制度(JC-STAR),助消費者提升產品資安識別

日本建立物聯網產品資安符合性評鑑及標籤制度(JC-STAR),助消費者提升產品資安識別 資訊工業策進會科技法律研究所 2025年10月30日 壹、事件摘要 為因應物聯網(Internet of Things,簡稱IoT)產品日趨嚴重的資安威脅,日本陸續訂定針對物聯網產品資安之國內法規與政策方針,除了為強化物聯網產品之資安要求以外,藉由具體的資安評級要求,適用不同類型的物聯網產品,再透過資安標籤制度以區別產品,提升產品之資安識別,以供消費者選購時參考。據此,本文觀測日本近期建立的JC-STAR制度與其所適用國內法規,供我國未來參考與借鏡。 貳、重點說明 一、日本JC-STAR制度背景與目的 日本資訊處理推動機構(独立行政法人情報処理推進機構,Information-Technology Promotion Agency, Japan,簡稱IPA),依日本經濟產業省於2024年8月23日所公布之《IoT產品資安符合性評鑑制度建構方針》政策架構下[1],建立了《物聯網產品資安符合性評鑑及標籤制度》(セキュリティ要件適合評価及びラベリング制度,Labeling Scheme based on Japan Cyber-Security Technical Assessment Requirements,簡稱JC-STAR),並於2025年7月29日完成《物聯網產品資安符合性評鑑與標籤制度之基本規章》[2](セキュリティ要件適合評価及びラベリング制度の基本規程,簡稱本規章)之最終修訂,建立了JC-STAR制度的框架。本規章將物聯網產品的定義、產品所需的附隨服務(含數位服務等)、可提供驗證服務之單位、第三方監督、廠商自我宣告機制、資安符合性基準、評鑑與評鑑報告書、資安符合性標籤及分級機制等多種要件、適用對象與要求事項明確化,確立了以星等為評級的JC-STAR資安標籤制度框架。此外,JC-STAR制度針對物聯網產品採購方、使用方等不同的資安需求,透過附有資安標籤的產品以供各自選購時為考量,因此JC-STAR制度有以下二點優勢: (一) 較易滿足政府或企業的採購標準 針對政府機關或企業等所需採購的物聯網產品,事前已透過共通性的適用標準,將物聯網產品資安進行評鑑分級,並將評鑑流程可視化管理,不僅使產品符合各組織或單位的資安防護需求,同時使產品選購更加便利。 (二) 確保特定領域事業或行業等符合資安法規要求 基於特定領域事業或行業可能有特殊的資安需求,通過符合性評鑑的物聯網產品,因經第三方驗證後以最高等級的標籤呈現,故可確保符合特定領域事業團體之特殊資安需求,或配合指定使用,以確保其採購之物聯網產品均具備合規性。 二、日本JC-STAR框架與資安要求 日本JC-STAR制度是結合歐洲電信標準協會(ETSI)網路安全技術委員會於2022年6月所公布的《網路安全暨隱私保護標準》(ETSI EN 303 645),以及美國國家標準與技術研究所(NIST)於2022年9月公布的《消費者物聯網產品之核心基準》(NISTIR 8425)等適用標準,並經日本官方改定調整成為適用於日本國內之獨特制度。[3]JC-STAR是基於日本官方所定義之物聯網產品符合性標準(涉及資安技術要求事項等),確認物聯網產品是否符合資安要求以及進行可視化的管理。JC-STAR將物聯網產品區分成四種星級,詳述如下: (一) 一星級(★1) 物聯網產品須符合產品共通性之要求,並適用最低限度之資安要求事項,倘若產品已滿足相關要求事項,由產品供應商自我宣告即可。 (二) 二星級(★2) 視物聯網產品的類型、功能特徵等因素,於一星級以上增訂基礎的資安要求事項,倘若產品已滿足相關要求,仍由產品供應商自我宣告即可。 (三) 三星級(★3) 視物聯網產品的使用對象,包含政府機關、關鍵基礎設施或相關業者、地方政府或人民團體、大型企業之關鍵系統等,依產品類型、功能特徵等因素,訂定共通性之資安要件,並須由獨立第三方進行驗證,並須取得評鑑機關作成的符合性評鑑報告書以及受相關單位賦予標籤。 (四) 四星級(★4) 適用程序上雖與三星級相同,依產品類型、功能特徵等因素,訂定共通性之資安要件,並由獨立第三方進行驗證,須取得評鑑機關作成的符合性評鑑報告書以及受相關單位賦予標籤。惟物聯網產品中,諸如通信設備等所適用的資安要求及相關風險層級較高,因此為最高防護等級。 值得注意的是,日本正積極與新加坡、英國、美國、歐盟等各國專責機關等交涉中[4],預計將JC-STAR制度與各國物聯網產品制度相互承認並使其與國際接軌。 參、事件評析 日本透過國內政策方針及訂定規章,結合其他先進國家的資安標準,建立了屬於日本自己的物聯網產品資安標籤JC-STAR制度。主要將各種不同類型的物聯網產品,賦予不同星等評級,供一般消費者或政府、企業法人等選購時參考,具體提升針對物聯網產品的資安識別。此外,依產品適用對象或風險層級不同,適用不同程度的資安要求事項。倘若涉及政府或企業法人等採購需求,則可能適用三星或四星等級,且產品均須經獨立第三方進行評鑑後,才能取得符合性評鑑報告書,並添附資安標籤。 因此,JC-STAR並非僅針對政府或公部門單位採購適用,而是擴及日本國內產業或是一般消費者,因此日常中物聯網產品的使用,均受到全面性的資安保障。另一方面,倘若未來日本JC-STAR制度受到其他各國承認,即代表物聯網產品可在已簽署承認的國家間受到信任而流通產品,故可望大幅降低日本國內物聯網產品供應鏈符合國際法規或契約要求的成本,有助於提升產業競爭力。據此,日本以資安標籤提升消費者識別,並有物聯網產品資安驗證機制之整體性規劃,均可供我國推動物聯網產品資安治理政策之未來借鏡與參考。 [1]〈IoT製品に対するセキュリティ適合性評価制度構築方針〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/sangyo_cyber/wg_cybersecurity/iot_security/pdf/20240823_1.pdf (最後瀏覽日:2025/10/13)。 [2]〈セキュリティ要件適合評価及びラベリング制度の基本規程〉,独立行政法人情報処理推進機構,https://www.ipa.go.jp/security/jc-star/begoj90000003563-att/JSS-01.pdf (最後瀏覽日:2025/10/13)。 [3]〈IoT製品のセキュリティ確保に向けて ~セキュリティ要件適合評価及びラベリング制度(JC-STAR*)の紹介~〉,頁25,独立行政法人情報処理推進機構,https://www.ipa.go.jp/security/jc-star/begoj9000000gg60-att/JC-STARsetumeikai_1.pdf (最後瀏覽日:2025/10/13)。 [4]〈ファクトシート:岸田総理大臣の国賓待遇での米国公式訪問〉,日本外務省,https://www.mofa.go.jp/files/100652150.pdf (最後瀏覽日:2025/10/13)。

TOP