印第安那州首席檢察官Greg Zoeller對Wellpoint保險公司提起訴訟標的金額30萬美元之損害賠償訴訟,主張該公司因遲延向首席檢察署及超過32,000萬因個人資料外洩影響所及之客戶通報個資外洩事件,而違反印第安那州通報法〈Indiana notification laws〉中通報及揭露規定〈Chapter 3. Disclosure and Notification Requirements及Chapter 3. Disclosure and Notification Requirements〉,依法各得請求15萬美元罰金,此為印第安那州提起之首件違反通報義務之訴訟。
前述法令於2009年7月生效,新法規定個人資料擁有者〈database owners〉負有「通報義務」,其於個資外洩事件發生後,必須在「合理期間」〈within a reasonable period of time〉內,對「潛在受影響之個人」〈both the individuals potentially affected by a data breach〉,以及檢察署通報,惟經調查,該公司未於合理時間內通報前述應通報之對象。
經查該公司於今〈2010〉年2、3月間即發現客戶個資外洩,卻6月18日始通知客戶,檢察署展開調查後認定其遲延通報無正當理由,故代表印地安那州向其提起民事賠償。
前述所指外洩之個人資料包括:提出投保申請者之個人資料內容,諸如「社會安全碼」〈social security number〉、「財務資訊」〈financial information〉、「健康記錄」〈health records〉,因該保險公司網頁之照管者〈siteminder〉未能實行安全防護,使盜竊身分之人〈identity thief〉得以改變統一資源定址器〈URL〉而窺見申請者的個人資訊。
除印第安那州客戶外,該保險公司因客戶個資外洩亦使其他州投保申請者資訊曝露,包括:美國加州、科羅拉多、康乃迪克、肯特基、密蘇里、內華達、新罕布夏、俄亥俄及威思康辛等九個州,約有47萬個客戶可能因此受影響。
有鑑於線上市集(如Google Play)、訂房網站等線上平台提供了迅速進入國際消費市場之機會, 因此成為了數百萬企業提供服務的首選之地。然而,存在於「平台對商家」(platform–to-business, P2B)之間的某些結構性問題,卻導致了企業之間的不公平交易行為。是以,歐洲議會、歐盟理事會與歐盟執委會於2019年2月14日就「提升線上中介服務商業用戶的公平性與透明性規則」(Regulation on promoting fairness and transparency for business users of online intermediation services),達成政治協議,歐洲議會並已於2019年4月17日批准。 該規則為全世界第一個針對線上平台與商業用戶訂定之規則,係數位單一市場策略(Digital Single Market Strategy)的一部分,預計適用於整個線上平台經濟,亦即,目前在歐盟境內營運的7000個線上平台或市集都包含在內,無論是科技巨擘,抑或是規模雖小但對商業用戶具重要議價能力的新創公司(small start-ups)皆屬之。此外,新規則中涉及搜尋結果排序透明度之部分,亦將適用於搜尋引擎。 其中,由於數以百萬計的中小企業是構成歐盟經濟的重要支柱,是以此番訂定的新規則,係專門針對此些較無議價能力的中小企業而設計。中小企業可自新規則中獲益之項目主要有四: 1. 禁止特定不公平行為 (1) 不得突然且未附理由的暫停帳號使用權 線上平台不得在無明確理由或未提供申訴可能性之情況下,暫停或終止賣家帳戶。 (2) 條款與條件需簡明易懂且變更時須提前通知 條款與條件需易於取得且以簡明易懂之文字書寫,當條款與條件有所變更時,線上平台需在15天之前通知,使賣家得即時調整業務,並可視業務調整複雜度適時延長通知期間。 2. 提升線上平台透明度 (1) 排序透明化 市集與搜尋引擎需揭露其排序商品或服務的主要參數,以利賣家進行適度優化。 (2) 強制揭露線上平台的部分商業行為 由於部分線上平台除了提供市集促進交易進行,更在該市集中身兼賣家之角色,是以,為維護公平競爭的環境,新規則強制此些線上平台全面揭露任何可能給予自家產品的優勢。此外,該等線上平台還需揭露所蒐集之資料及使用方式,尤其是與其他商業夥伴共享之資料。當涉及個人資料時,則有一般資料保護規則(General Data Protection Regulation, GDPR)之適用。 3. 增設爭端解決機制 (1) 建立投訴處理系統 線上平台應建立內部投訴處理系統以對商業用戶提供適當協助。 (2) 設置調解程序 線上平台應提供調解之協助,以助賣家在法庭外解決爭議,有效節省時間與金錢。 4. 規則之實施 商業公會能對違反規則之線上平台提起告訴,以降低賣家對平台報復行為的恐懼,並降低個別賣家的訴訟成本。 在歐洲議會批准後,一旦歐盟理事會同意,新規則將在公布後12個月後正式施行,且為了確保新規則與時俱進,歐盟將在適用後的18個月內進行檢視,並設立專門的線上平台觀測站(Online Platform Observatory),以監控市場的變化,並確保新規則有效施行。
德國2015年12月3日通過數位健康法(e-Health Gesetz)德國聯邦議會於2015年12月3日通過「健康制度安全數位通訊與應用法」 (下稱數位健康法,Gesetz für sichere digitale Kommunikation und Anwendungen im Gesundheitswesen, e-Health-Gesetz),本法無須經過聯邦參議院同意,最快將於2016 年初生效。 該法係以患者的權益和隱私為中心而制定。其中安全的數位基礎設施將改善健康照護、加強病患的自我決定權。數位健康法要求於全德範圍內,從2016 年中期開始至 2018年中,依法定之資訊技術基礎設施的時間表引進相關技術與設施,在醫療診所和醫院之間全面進行電信基礎設施的連結。 本法案要點摘要如下: • 最新一代的主資料管理(Stammdatenmanagement) (被保險人主資料(Versichertenstammdaten)的測試及更新) 將提供醫生最新資料和防止醫療給付濫用。這個數位健康卡第一個線上應用,將在2018 年中全面引進。而 2018 年 7 月 1 日起未參加線上被保險人主資料驗證之醫生,其補貼亦將削減。 • 醫療用緊急資料(Notfalldaten)應從 2018 年開始依被保險人意願在數位健康卡上儲存,以避免危險藥物的交互作用。因此,從2016 年 10 月開始,使用三種以上藥物患者,將收到藥物治療計畫(Medikationsplan)。而藥劑師自始即有義務在被保險人變更處方時更新之。從 2018 年開始,用藥計畫可以以電子傳輸方式從數位健康卡卡中檢索。 • 數位健康法將促進電子病歷(Arztbriefe)的推動。病患可以對其主治者告知其最重要的健康資料,並以數位資料形式儲存使用。另外,病患的權益和自主決定是本法重點,患者不僅可自行決定何種醫療資料應以卡片儲存,並可決定誰有權查閱。病患亦得提取卡片中儲存之資料。如血糖測量值、從可穿戴裝置或隨身手圈所量測的資料。 • 為提倡遠距醫療(Telemedizin),從 2017 年4 月開始遠距 x 光診斷評估和從 2017年7 月起,線上視訊諮詢時段納入醫療合約給付中。使病患更易獲取醫療訊息,同時在預後諮詢和監控諮詢中亦能得到醫療服務。 • 為進入遠端醫療時代,必須確保各種 IT 系統可以進行溝通,故須在 2017 年 6 月 30 日前提出互通性指引(Interoperabilitätsverzeichnis),使衛生部門不同的 IT 系統所採用的標準簡明化。 • 智慧手機和其他行動裝置使用健康APP已漸普及,到 2016 年底前應確認,被保險人是否可以使用相關設備來行使他們的醫療資料存取權限以及資料是否能夠相互連結進行傳輸。
歐盟執委會提出「具可信度之人工智慧倫理指引」歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。 該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。
論析各國之企業智慧資產揭露機制