在歷經多次談判會議,由包括美國、歐盟、日本、韓國等11個國家共同參與的「反仿冒貿易協定(Anti-Counterfeiting Trade Agreement, 簡稱ACTA)」,終於在雪梨展開的最後談判回合(11月30日-12月4日)中獲得共識,並於日前正式對外發布ACTA協定文本內容。
該協定旨在透過跨國境的國際合作,有效打擊日益猖獗的盜版及仿冒問題,全文共計6章45條文,包括民、刑事執行、邊境措施等,且因應數位化時代對智慧財產權保護所帶來的衝擊,針對數位化環境智慧財產權的執行措施,也有相對應的規定(section 5: Enforcement of Intellectual Property Rights in the Digital Environment)。而ACTA協定文本尚須提交各簽約國政府或國會表決同意的程序,方能生效。
以歐盟為例,儘管遭受歐盟境內廣大的批評聲浪,歐盟國會於11月24日以驚險的半數通過爭議許久的「反仿冒貿易協定(Anti-Counterfeiting Trade Agreement, ACTA) 」。歐盟國會宣稱,透過ACTA協定的簽署,以國際合作的方式,將有助於解決現今猖獗的侵權問題,以落實智慧財產權的保障。尤其是針對歐盟境內的地理標誌(如Champagner、Spreewald-Gurken),未來將可透過跨國合作,提升對歐洲企業的保護。雖然現階段仍有許多問題未能達成共識,但至少ACTA協定啟動各國合作打擊仿冒的開端。
不過,雖然歐盟執委會一直以來對外“消毒“, ACTA協定的簽署前提是在符合歐盟現行法規的基礎上,並且不會對歐盟人民的基本權、個人隱私權保障造成威脅。但包括電子通 訊傳播業者(e-communications providers)、無疆界醫師組織等團體,都發表聲明,要求歐盟國會確保ACTA協定落實於各會員國內,不會影響改變歐盟既有的法制規範。包括是否引進三振條款,透過網路封鎖手段遏止侵權行為、是否以刑事手段制裁侵權人等爭議,勢必在各歐盟會員國提交其國會表決時,將引起極大的討論。
「日本農業數據協作平台」(簡稱WAGRI)於2017年內閣府計畫的支持下,委由慶應義塾大學建立,該平台具備農業數據相容、數據共有與數據提供三大機能,日本IT企業NTT、富士通、農機大廠久保田、洋馬等均已加入WAGRI試營使用行列。今(2019)年該平台將移轉予國立研究開發法人農業食品產業技術總合研究機構(下簡稱農研機構),正式開始進入商業模式營運。欲利用WAGRI之機關除須向WAGRI協議會(由農業法人、農機製造商、ICT供應商、學研機構組成,以提出建議改善、普及WAGRI為其立會宗旨)遞交「入會申請書」外,亦須向農研機構遞交「利用規約」、「數據提供利用規約」與「規約同意書兼利用申請書」。 自主營運後,原先不收費方式已變更,欲利用WAGRI之機關依據以下兩種利用平台方式,須繳納不同的費用: 數據利用(利用WAGRI數據者)、數據利用提供者(利用WAGRI數據且提供數據予WAGRI者) 平台利用月費5萬日圓 若利用有償數據時,須另外支付數據使用費 數據提供者(提供數據予WAGRI者) 平台利用月費3萬日圓 僅提供無償數據的數據提供機關,原則上不需要繳納平台利用費 我國為發展智慧農業,智慧農業共通資訊平台有提供免費OPEN DATA介接功能,近年發展智慧農業之農企/機關團體,亦有建立平台作為內部蒐集、利用數據之用,例如弘昌碾米工廠建置水稻健康管理與倉儲資訊服務平臺,未來該類平台均有可能朝商業模式發展。WAGRI建立一套商業模式嘗試自主營運,後續將持續追蹤WAGRI營運狀況作為我國智慧農業平台之運作參考。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
日本知名連鎖旋轉壽司發生營業秘密外洩爭議,顯示企業建立及持續推動內部機密資訊管理制度之重要性東京地方檢察廳於2022年10月21日以違反《不正競爭防止法》等為理由,起訴被告「かっぱ寿司」之營運公司「カッパ・クリエイト」公司(下稱Kappa壽司)及其前社長田辺公己(下稱田辺)等。因本案牽涉上市企業的前社長,故引起日本社會極大關注,東京地方法院已於2022年12月22日召開首次審理庭。 本案被告田辺在1998年加入「はま寿司(下稱Hama壽司)」之母公司,並於2014年到2017年間擔任Hama壽司董事;嗣後在2020年11月時,轉職至Kappa壽司。雖然田辺在離職時已簽署保密協議,但在離職前後數月間,持續透過不正當方式,取得Hama壽司之食材成本及其供應商等資訊,同時更指示仍任職於Kappa壽司之部屬製作Kappa壽司與Hama壽司之成本對照表,並以郵件方式提供被告,被告再於Kappa壽司內部使用。 雖然Kappa壽司嗣後發表公開聲明,強調並無跡象顯示該公司曾依據相關成本對照表,進行開發新產品或更換批發商等措施,但田辺在審理庭上,已承認指控,而且在被捕時,曾坦言行為動機為希望提高業績。 對於本案,有日本輿論指出海外因應人員轉職較頻繁,對於機密資訊之管理,通常訂有較嚴格的規定,惟日本目前欠缺相關觀念;亦有論者認為因為必須符合營業秘密之法定要件,始受《不正競爭防止法》之保護,故強調機密管理對於保護商業秘密及針對機密外洩之法律救濟的重要性。從本案觀之,任何產業類型的企業都可能會有屬於營業秘密的資訊,為維護企業的商業競爭力,避免因營業秘密外洩影響公司營運,企業應建立及持續推動內部機密資訊管理制度,並因應社會與管理環境變化等,精進管理模式。同時應定期進行教育訓練,提高人員的機密保護意識,強化營業秘密外洩事件發生時的舉證,以有效的主張權利。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
美國聯邦資料戰略〈2020年行動計畫〉美國白宮於2018年3月發布〈總統管理方案(President’s Management Agenda)〉,其中發展「聯邦資料戰略(Federal Data Strategy)」,將資料作為戰略資產,藉以發展經濟、提高聯邦政府效能、促進監督與透明度,為方案中重要之工作目標之一。「聯邦資料戰略」之架構上主要包括四個組成部分,以指導聯邦資料之管理和使用:1.使命宣言:闡明戰略之意圖與核心目的;2.原則:有十大恆定原則對於機關進行指導;3.實作規範:有四十項實作規範指導機關如何利用資料之價值;4.年度行動計畫:以可衡量之活動來實踐這些實作規範。 於2019年12月23日,〈2020年行動計畫〉之最終版正式發布,其將建立堅實之基礎,在未來十年內支持戰略之實踐。詳言之,〈2020年行動計畫〉之內涵主要包含三大部分與二十個行動: 機關行動:旨在支持機關利用其資料資產,包括六大行動:(1)行動1:確認用於回答對於機關而言具有優先性之問題所需之資料;(2)行動2:將機關之資料治理制度化;(3)行動3:評估資料與相關基礎設施之成熟度;(4)行動4:確認提高員工資料技能之機會;(5)行動5:確認用於機關開放資料計劃之優先資料資產;(6)行動6:發布與更新資料庫存。 實踐共同體之行動:由特定機關或一群機關就一共通主題所採取之行動,可加速並簡化現有要求之執行,包括下列四大活動:(1)行動7:成立聯邦首席資料官委員會;(2)行動8:改善用於AI研究與發展之資料與模型資源;(3)行動9:改善財務管理資料標準;(4)行動10:將地理空間資料實務整合至聯邦資料事業中。 共享解決方案行動:為所有機關之利益、由單一機關或委員會試行或發展之活動:(1)行動11:開發聯邦事業資料資源儲存庫;(2)行動12:創建美國預算管理局聯邦資料政策委員會;(3)行動13:制定策畫之資料技能目錄;(4)行動14:制定資料倫理框架;(5)行動15:開發資料保護工具組;(6)行動16:試行一站式之標準研究應用程序;(7)行動17:試行一種自動化之資訊收集評論工具,該工具支持資料庫存之創建與更新;(8)行動18:試行用於聯邦機構之增強型資料管理工具;(9)行動19:制定資料品質評估與報告指引;(10)行動20:發展資料標準之儲存庫。 〈2020年行動計畫〉確定機關之初步行動,其對建立流程、建立能力、調整現有工作以更好地將資料作為戰略資產至關重要。未來之年度行動計畫將會在〈2020年行動計畫〉之基礎上進一步發展出針對聯邦資料管理之協調方案。