為降低奈米材料風險以保障健康安全,美國環保署(EPA)擬公佈一系列相關新規範

  為了致力於確保及避免因特定奈米材料的曝露而不經意對環境、健康與安全(Environmental, Health and Safety,簡稱EHS)帶來潛在危害,美國環保署(Environmental Protection Agency,簡稱EPA)預計將於今(2011)年1月針對奈米材料的管理規範公佈三項新規定,此舉將使得EPA更能對於目前既有與未來新興奈米材料上有更充分的管理空間,同時這三項新規定也將接受來自公眾與各界人士的意見評論。

 

  這三項新規定分別與顯著新用途規則(Significant New Use Rule)、試驗規則(Testing Rule)和資料收集規則(Data Collection Rule)有關。首先,就顯著新用途規則而言,多年來相關倡議團體(advocacy group)請求EPA將既有的奈米材料視為是「毒性物質管理法」(Toxic Substances Control Act,簡稱TSCA)下的顯著新用途,依此EPA將可管理奈米銀、奈米級二氧化鈦、奈米級氧化鋅等材料,亦可因此對要求廠商限制產量、採取勞工安全措施、進行毒性測試,並要求廠商不得故意將奈米材料釋出或排放至環境中。雖然現在尚無法確知詳細法令規定,但已知EPA有意透過TSCA第5條處理上述種種問題,其可能作法為奈米材料將不再受既有化學物質並非顯著新用途的限制,而任何以既有化學物質製成的新型奈米材料將被視為是顯著新用途。

 

  其次,則是試驗規則,目前EPA對於特定奈米材料要求進行90日呼吸毒性試驗,而新規定將在TSCA第4條之下,要求對奈米粘土、奈米氧化鋁、奈米管等也進行相同的試驗。此係由於目前在經濟合作開發組織(Organization of Economic Cooperation and Development,簡稱OECD)主導的毒性試驗計畫之下,仍未有其他國家願意主導奈米黏土、奈米氧化鋁的試驗,以及通常90日呼吸毒性測試所費不貲,故未來美國預計率先投入,各界亦期盼EPA所提出的新規定將准予廠商以合作提出申請,以利於降低成本並落實相關試驗。

 

  此外,資料收集規則將要求廠商必須正式遞交相關奈米材料的EHS資料,以供EPA進行評估審查,故新規定將在TSCA第8條之下,將原先EPA「奈米材料管理計畫」(Nanoscale Materials Stewardship Program,簡稱NMSP)的自願性參與改為強制性的資料收集,然而由於TSCA中規定對於僅使用少量奈米材料或作為研究目的者,可申請免除資料收集,故廠商仍可依此排除此一義務。

 

  綜合以上,使用相關奈米材料的廠商應密切觀察未來三項新規定的發展動向,以確定日後如何遵守EPA的相關法令規定,落實風險管控,保障自身權益。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 為降低奈米材料風險以保障健康安全,美國環保署(EPA)擬公佈一系列相關新規範, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5372&no=16&tp=1 (最後瀏覽日:2025/07/07)
引註此篇文章
你可能還會想看
英國交通運輸部公布「交通運輸之未來」公眾諮詢文件

  英國交通運輸部及聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV)於2018年7月30日公布「交通運輸之未來」公眾諮詢文件(Future of Mobility-Call for Evidence),提及未來之交通運輸趨勢: (1) 更加潔淨之交通運輸工具(cleaner transport):因電池價格下降、電動車技術之改善、開發替代燃料等因素,可減少現有交通工具之碳排放,並作為後續新技術研發基礎。英國政府已明確表示預計於2040年前讓新車及貨車實現零碳排目標。 (2) 自動化(automation):因感測器技術進步以及演算法和人工智慧之快速發展,使交通運輸自動化程度大幅提升。英國政府預計2021年可讓完全自動化駕駛車輛於道路行駛。 (3) 資料及聯結(data and connectivity):未來聯網車輛間可互聯,亦可與交通號誌互聯,透過即時路況告知,以避免道路壅塞。 (4) 新模式(new modes):英國已使用無人機於緊急服務或基礎設施勘查,未來可能有垂直起降之車輛出現,而計程車及公車之分別亦逐漸模糊。 (5) 交通運輸共享化(shared mobility):利用共享車輛可降低交通壅塞及廢氣排放,如公共自行車、商業化之車輛共乘。 (6) 不斷轉變的消費者態度(changing consumer attitudes):消費者已漸漸期待所有交通工具的預約叫車及支付,皆可透過手機進行,主管機關則應考量消費者需求,確保相關交通服務的利用。 (7) 新商業模型(new business models):未來交通運輸已有新商業模式出現,如公共運輸行動服務(Mobility as a Service)。   英國政府期望透過上述交通運輸變革,能帶來更安全、便利及潔淨之交通,並實現更好的生活品質。

「亞馬遜公司(amazon)」積極向美國政府機關推動其所開發的人臉辨識軟體“Rekognition”,將可能造成隱私權的重大侵害

  亞馬遜公司所開發的“Rekognition”軟體可以進行照片中的人臉辨識識別,單張圖片中可辨識高達一百人,同時可以圖片進行分析及比對資料庫中的人臉長相。目前亞馬遜公司積極向政府機關推銷這套軟體。可能造成的風險是,公權力機構可透過使用“Rekognition”軟體來辨識或追蹤任何個人,警察機關可以隨時監控人民的行為,各城市的政府機關也可能在無合理理由的狀況下隨時查看人口居住狀況,尤有甚者,美國移民及海關執法局(Immigration and Customs Enforcement, ICE)可以使用該軟體來監控移民的狀況,即使是無任何犯罪疑慮的狀況下亦可進行,將政府打造成巨大的監控系統,有造成隱私權嚴重侵害的疑慮。因此無論亞馬遜公司內外都有反對將“Rekognition”軟體推銷給政府機構的聲浪,尤其美國公民自由聯盟(American Civil Liberties Union, ACLU)更是發起多項連署抗議。   支持政府使用“Rekognition”軟體的意見則認為,使用“Rekognition”軟體將可以更有效率地辨識人臉,在尋找失蹤兒童或在公共中辨識出恐怖份子可以發揮更大的作用,不啻是保護公眾法益的進步。   佛羅里達的奧蘭多市警察機構曾經使用“Rekognition”軟體後因契約到期而一度停止使用,於7月9日與亞馬遜公司續約繼續測試使用該軟體,奧蘭多市警察機構宣稱以目前測試階段將不會使用一般民眾的照片進行測試,將不會造成人民的隱私權侵害。

新加坡採取「雲端友善」政策方針,發布個人資料保護指引

  新加坡個人資料保護委員會(PDPC)為讓企業能妥適的遵循2012年發布的個人資料保護法(Personal Data Protection Act/PDPA),於2013年9月發布個人資料保護法(PDPA)的執行指引文件:「PDPA關鍵概念指導方針(Advisory Guidelines on Key Concepts in the PDPA)」,針對各項如何蒐集、處理及利用個人資料的要求與義務,提供細節性說明及應用範例。執行指引文件的發布,是源自於公眾在實際操作法遵要求時,所發生的執行困難、疑義和衍生的建議和意見,彙整後進行法規釋疑和舉例。此份文件的要求係立基於實用主義及「企業友善(business-friendly)」的理念,幫助機構調整業務運作流程以及妥善的遵守法律的規定。   執行指引文件提供關鍵名詞的詮釋,例如「個人資料」在PDPA裡的定義為:任何可以識別個人、不拘形式及真實性的資訊;針對「謝絕來電條款(Do not call)」的遵循方式亦有細緻化的說明;就各項不同的具體子議題,清楚的提供常識性的措施(Common-Sense Approach)供機構採用,讓法規要求合乎常理,使個人資料保護與企業因需求而對個人資料進行蒐集、利用和揭露之行為間取得衡平。   新加坡個人資料保護法(PDPA)兩大立法目的:強化個人對自己個人資料的資訊控制權;使新加坡因提供充分的安全維護機制而受企業信任,強化新加坡的經濟競爭力與地位。另外,相較於其他國家在國際傳輸上有較嚴格的限制(必須有相同等級的個人資料保護立法為傳輸前提),新加坡的法制理念是僅讓企業遵守最低限度的安全維護要求後,便能將個人資料進行國際傳輸,這樣較彈性的法制設計讓新加坡有望成為亞太地區的資料與研究中心樞紐。

美國資訊安全分析新挑戰:巨量資料(Big Data)之應用

  在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。   資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。   不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。   由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。   美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。   「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。   不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。

TOP