美國加州網路身分冒用法2011年01月正式生效

  2010年12月,加州參議院通過網路身分冒用法(Criminal “E-personation”,Senate Bill 1411),針對在網路上惡意冒用他人名義的行為態樣處罰,法案提案人加州參議員Joe Simitian表示:「現有的身分冒用法規係1872年所訂,無法規範現代科技所衍生的身分冒用態樣。」所以法院一般認為網路上的冒用屬於身分剽竊的態樣,但此類型通常不涉及金錢的損失,法庭上證明困難,受害者求償不易,因而制定此一法案。


  本法針對故意、未經同意在網路或其他電子途徑冒用身分,傷害、恐嚇、威脅、詐欺他人的行為,判定為輕罪(standard misdemeanor),最高可處以1000元美金或一年以下有期徒刑。因此,在社群網站中冒用他人名義,發表不雅言論的行為往後可能會受到處罰。


  但「傷害、恐嚇、威脅、詐欺」的行為態樣的認定,可能會造成法院實際執法上的困難,而且可能侵害人民憲法第一增修條文的權利。以The Yes Man組織為例,該組織假冒美國商會(American Chamber of Commerce)在網路上發表支持眾議院通過氣候變遷法案,其主要目的在於遊說美國商會改變其立場,本法尚未通過前,美國商會向加州法院提出訴訟,美國商會曾就訴訟過程表達不滿,認為現行法對於身分被冒用者無所助益,然新法正式施行後,本案如何在不侵犯憲法第一增修條文的情況下,嚇阻真正帶有惡意的身分冒用者,值得進一步觀察。

相關連結
※ 美國加州網路身分冒用法2011年01月正式生效, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5390&no=55&tp=1 (最後瀏覽日:2025/09/16)
引註此篇文章
你可能還會想看
因應韓美自由貿易協定,韓國實施新修正之專利及商標制度

  韓國特許廳於2011年11月22日送交韓國國會批准之韓美自由貿易協定(Free Trade Agreement,簡稱FTA),於2012年3月15日正式生效。為因應韓美FTA的簽定,韓國專利及商標制度均須進行一定幅度的修正,例如專利權存續期間延長、聲音及氣味得註冊為商標等新制度。   首先,專利法修正重點如下: 專利權存續期間延長:指針對因審查過程緩慢,導致專利登記遲延者,遲延期間得視為專利權之存續期間。 專利申請優惠期延長:專利申請人將其發明公開發表在學術期刊時,將申請之優惠期從公開後6個月延長至12個月,亦即12個月內提出申請仍可取得專利。 廢止專利權撤銷制度:將發明專利在韓國國內一定期間(最少5年)不實施之撤銷專利權事由,予以廢止。   其次,商標法修正重點如下: 增訂新型態商標及證明標章制度:聲音、氣味得註冊為商標;新增證明標章之保護態樣,以證明「品質」、「原產地」、「生產方法」等特性。 廢止商標之專用使用權登記制度:修法前之韓國商標法第56條第1項第2款規定,商標專用使用權之設定、移轉(一般繼承之情形除外)、變更、消滅(權利混同之情形除外)或處分之限制等事項,非經登記,不生效力。 新增法定損害賠償制度:商標權人除可依照實際侵害情況請求損害賠償,商標法亦新增權利人得請求法定5千萬韓圜範圍內的損害賠償金額,且須經法院判決同意該損害賠償額度。   此外,針對專利法、新型專利法、設計保護法、商標法、不正競爭防止及營業秘密保護法等法規,也一併新增「保密命令制度」,亦即透過訴訟程序,對於營業秘密有被公開之虞之情形時,法院可對雙方當事人作出不得公開之保密命令。韓國期透過此次專利法及商標法等相關法規之修正,讓專利權人於權利行使期間得以獲得實質保障,同時亦擴大企業商標選擇之範圍。

英國國家醫療服務體系(NHS)公布國家資料退出(Opt-out)操作政策指導文件

  個人健康資料共享向為英國資料保護爭議。2017年英國資訊專員辦公室(ICO)認定Google旗下人工智慧部門DeepMind與英國國家醫療服務體系(NHS)的資料共享協議違反英國資料保護法後,英國衛生部(Department of Health and Social Care)於今年(2018)5月修正施行新「國家資料退出指令」(National data opt-out Direction 2018),英國健康與社會照護相關機構得參考國家醫療服務體系(NHS)10月公布之國家資料退出操作政策指導文件(National Data Opt-out Operational Policy Guidance Document)規劃病患退出權行使機制。   該指導文件主要在闡釋英國病患退出權行使之整體政策,以及具體落實建議作法,例如: 退出因應措施。未來英國病患表示退出國家資料共享者,相關機構應配合完整移除資料,並不得保留重新識別(de-identify)可能性; 退出權行使。因指令不溯及既往適用,因此修正施行前已合法處理提供共享之資料,不必因此中止或另行進行去識別化等資料二次處理;此外,病患得動態行使其退出權,於退出後重新加入國家資料共享體系;應注意的是,退出權的行使,採整體性行使,亦即,病患不得選擇部分加入(如僅同意特定臨床試驗的資料共享); 例外得限制退出權情形。病患資料之共享,如係基於當事人同意(consent)、傳染病防治(communicable disease and risks to public health)、重大公共利益(overriding public interest)、法定義務或配合司法調查(information required by law or court order)等4種情形之一者,健康與社會照護相關機構得例外限制病患之退出權行使。   NHS已於今年9月完成國家資料退出服務之資料保護影響評估(DPIA),評估結果認為非屬高風險,因此不會向ICO諮詢資料保護風險。後續英國相關機構應配合於2020年5月前完成病患資料共享退出機制之建置。

歐盟執委會提出人工智慧創新計畫,促進歐盟人工智慧技術應用與相關企業發展

2024年1月24日,歐盟執委會(European Commission)推出了人工智慧創新計畫(AI innovation package),支持新創公司和中小企業開發符合歐盟價值觀的人工智慧。該計畫包含以下重要事項: 1.推動歐洲高效能運算聯盟相關之法規修正案(An amendment of the EuroHPC Regulation)。 (1)歐洲高效能運算聯盟是歐盟在2018年依法(Council Regulation (EU) 2021/1173)建立之組織。依該法內容,組織主要目標是在歐盟開發、部署具有極高運算能力的運算系統,為公部門和私人提供強大的運算和資料服務,以支持科學和工業的雙重轉型。 (2)本次法規修正案為歐洲高效能運算聯盟添加了新目標,新目標為建立人工智慧工廠,以促進歐盟對人工智慧的採用和創新。目標細節包含令歐盟取得、推廣人工智慧專用的超級電腦,建立一站式服務以支持歐盟各界開發人工智慧服務、產品及應用程式等。 2.在歐盟執委會下設立人工智慧辦公室,制定歐洲層級的人工智慧政策,並監督政策執行。 3.透過跨國論壇推動以下工作: (1)藉歐洲地平線計畫、數位歐洲計畫,向試圖開發、應用人工智慧的組織提供財政支援。預估將在2027年帶來四十億歐元投資額。 (2)過教育擴張人工智慧人才庫。 (3)鼓勵政府及民眾投資人工智慧新創企業。 (4)加速開發歐洲共同資料空間,供人工智慧社群使用。 (5)支持工業生態系統及公共部門應用人工智慧。應用領域包含機器人、健康、生物技術、製造、行動設備等。 4.歐盟執委會與部分成員國組織了兩個歐洲數位基礎設施聯盟如下: (1)語言科技聯盟(ALT-EDIC): 該聯盟主要工作之一為收集、開發歐洲各國語言模型,供公共部門、企業及未來人工智慧創新計畫使用。聯盟目標為增加歐洲語言資料可用性、維護歐洲語言及文化的多樣性。 (2)城市宇宙聯盟(CitiVERSE EDIC): 主要目標之一是支援城市利用人工智慧,優化各項管理流程。例如交通管理方面,可利用人工智慧模擬空氣品質變化對城市交通狀況的影響,以利政府提出相應解決方案。 目前人工智慧創新計畫的下一步,是先推動歐洲高效能運算聯盟相關之法規修正案。嗣後,透過執行該計畫各項內容,執委會將為歐盟人工智慧政策的實施做好準備。執行該計畫的過程中執委會不僅會支援歐盟各國公共部門採用人工智慧,也會積極推動民間開發、應用人工智慧技術,以提升歐盟競爭力和促進歐盟的永續發展。

美國情報體系發布「情報體系運用人工智慧倫理架構」

  美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。

TOP