迪士尼、20世紀福克斯、環球影城、哥倫比亞和華納兄弟於2011年2月向美國佛羅里達州南部法院起訴,控告Hotfile網站非法、大規模侵害其享有的著作權。美國電影協會(the Motion Picture Association of America, MPAA)於新聞稿中聲明,Hotfile以數位方式大規模的侵害他人著作權,而其經營人亦未馬上有效處理該侵權爭議。
Hotfile係近二年來提供電腦檔案寄存最熱門的網路空間(cyberlocker)服務業者之一,主要的業務在提供民眾一藏塞夾(stash box)儲存其私人影片。網路空間(cyberlocker)服務業者擁有龐大的儲存設備,並提供有限上傳檔案空間、檔案寄存時間及下載速度之免費服務,為雲端服務之一種形式,其主要收入是廣告或用戶付費,以維持營運。跟BitTorrent不同的是,cyberlocker無需下載任何軟體即可資訊共享,用戶只要上cyberlocker網站即可直接觀賞影片或電視節目。
MPAA在聲明中表示,Hotfile以支付費用之獎勵方式,鼓勵其會員上傳並散布受著作權保護之最熱門的電影或電視節目到Hotfile網站,任何人均可透過網路連結,到Hotfile網站下載受著作權保護之電影或電視節目。Hotfile並向下載該電影或電視節目之會員收取費用,卻未向所上述電影公司支付任何費用。原告(電影公司)因此對被告Hotfile訴請損害賠償及禁制令。
Hotfile提供上傳空間的網站用戶和流量近幾個月迅速增加,但該網站是否會因為原告(電影公司)向法院訴請損賠及禁制令,而支付巨額賠款或停止網路服務,則需視該案訴訟之發展情況。
去年八月甫通過的中國電子簽名法在今年四月一日正式生效,而中國首家對外提供電子簽章服務的憑證機構(電子印章中心)在三月三十日成立。 中國電子簽名法對於電子簽名的定義指出,電子簽名是指數據電文中以電子形式所含、所附用於識別簽名人身分並表明簽名人認可其中內容的數據。而電子簽名的適用範圍,除了在涉及婚姻、收養、繼承等人身關係、土地房屋等不動產權益轉讓、停止供水、供熱、供氣、供電等公用事業服務或法律、行政法規規定不適用電子文書的其他情形外,均可使用電子簽名。
何謂「TLO」?「TLO」係「技術移轉機關(Technology Licensing Organization)」之簡稱,專指大學研究成果申請專利後,將該等技術移轉給企業等之機關,如同產學間的仲介角色。 日本於平成10年(西元1998年)5月6日通過「促進大學等實施技術研發成果移轉給民間企業法(簡稱大學等技術移轉促進法或TLO法)」,目的在於將大學之研究成果技轉給民間企業,促進研究成果之實用化。 在承認TLO存在之同時,日本做了以下法令之配套:依據TLO法第8條,實施特定大學技術移轉之事業期間,第1年到第10年之授權金及專利申請審查手續費用減免1/2、產業競爭力強化法第19規定,若國家委託之研發成果,歸屬於受託者時,該研發成果之移轉授權不須經國家之承認、同時大學法人法第22條允許國立大學得為出資。同時TLO法亦承認若中小企業透過TLO取得研究成果之授權時,得降低中小企業投資育成株式会社支出資要件。
新時代的管理利器-系統化的企業員工管理制度 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現