Nike成立於1971年,以運動用品起家,曾於2013年登上美國雜誌《Fast Company》「最具創新力的公司」排名位列第一。Nike在2012年推出Flyknit系列產品,主打一體成型的針織鞋面,Nike表示Flyknit技術是經過多年的研究、設計與開發,除以接面不明顯的方式來形成鞋面,其所使用的針織材料還可在鞋面的不同區域產生不同的紋理,並提供運動員所需要的輕盈、支撐、透氣、靈活等特性。此外,Nike也申請了有關Flyknit技術的發明專利以及利用Flyknit技術生產鞋面的設計專利。Flyknit不但在運動鞋業掀起新的流行趨勢,也開啟了新的訴訟戰場。 2012年,adidas晚Nike幾個月也發表了編織鞋款Primeknit,Nike旋即對adidas提起侵害發明專利訴訟,訴訟進展至2017年11月底,adidas向美國聯邦上訴法院提出上訴並主張Flyknit應屬於常規紡織工藝,不應給予Nike發明專利,目前尚待訴訟結果。 2015年,Nike又對Skechers的編織運動鞋款提起侵害設計專利訴訟, Skechers則以高端針織設計聞名的Missoni產品為證據,要求美國專利審理暨訴願委員會(Patent Trial and Appeal Board,簡稱PTAB)審查 Nike設計專利的有效性,最後PTAB認為有部分Nike的設計專利是無效的,至2017年,Skechers持續向PTAB挑戰Nike有關Flyknit鞋面之設計專利,目前PTAB仍在審理進行中。 Nike的Flyknit專利訴訟戰持續擴大規模,今(2018)年5月3日Nike指控Puma的產品IGNITE Proknit、IGNITE Speed Netfit、Mostro Bubble Knit、Jamming,在2008~2016年間侵害了Nike有關Flyknit技術之7件專利,並於美國麻塞諸塞州聯邦地方法院提起專利侵權訴訟,Puma則回應表示其未侵犯任何Nike的專利,計劃將繼續生產其產品。
美國聯邦交通部公布自駕車4.0政策文件美國交通部(Department of Transportation)於2020年1月8日公布「確保美國於自動駕駛技術之領導地位:自駕車4.0」(Ensuring American Leadership in Automated Vehicle Technologies : Automated Vehicles 4.0)政策文件,提出三個核心原則及相對應的策略規劃: 一、 使用者與社會的保護: 整合自動駕駛技術之安全性,包括防堵對自駕車性能之詐欺或誤導行為,以強化民眾對此新興技術的信心。 與自駕車技術開發商、製造商及服務商合作,預防與降低惡意使用自動駕駛技術所造成的公共安全威脅及犯罪,如制定網路安全標準、於運輸系統之資料傳輸媒介及資料庫設計能夠防止、反應、偵測潛在或已知危險之可行作法。 要求製造商於設計和結合相關自動駕駛技術時,採取具整體風險考量之方式,以確保資料安全性與公眾隱私保護,特別是針對駕駛者與乘客,以及第三人資料存取、分享及使用。 支援與協助自動駕駛技術研發,並透過提供多樣化商品和服務,滿足消費者需求並增加自駕車的普及性,使國人能使用安全且能負擔的移動載具。 二、 保障市場效率: 採取靈活及技術中立政策,由大眾選擇具經濟及有效率的運輸方案。 透過相關智慧財產法規,保護相關技術,並持續推動經濟增長之政策及提升國內技術創新競爭力。 收集與研擬國內外法規資料,並使自動駕駛技術產品及服務能夠與國際標準接軌。 三、 促進與協調各方合作: 積極協調全國自動駕駛技術研究、法規和政策,以利有效運用各機構資源。 參考國際間自動駕駛技術標準及監理法規,並與各州政府及業界共同研擬與整合自動駕駛技術至現行運輸系統標準與相關法規。
加拿大運輸部發布自駕系統測試指引2.0,為建立全國一致的實驗準則加拿大運輸部(Transport Canada)於2021年8月6日發布「自駕系統測試指引2.0」(Guidelines for Testing Automated Driving Systems in Canada Version 2.0),建立全國一致的最佳實踐準則,以指導配有自動駕駛系統(Automated driving systems, ADS)之車輛能安全地進行實驗。根據從國內外測試活動中取得的經驗及教訓,對安全措施進行更新,內容包括: 一、實驗前的安全考量:探討在開始實驗之前應考量的安全注意事項,包括(1)評估實驗車輛安全性、(2)選擇適當的實驗路線、(3)制定安全管理計畫、(4)安全駕駛員與培訓、(5)民眾溝通及提高意識、(6)確保當地執法單位及緊急應變人員瞭解實驗活動。 二、實驗中的安全管理:討論在實驗過程中應重新檢視的安全考量,包括(1)使用分級方法進行測試、(2)調整安全管理策略、(3)制定事件和緊急應變計畫與步驟、(4)安全駕駛員的角色及職責、(5)遠端駕駛員和其他遠端支援活動的安全考量、(6)在沒有安全駕駛員的情況下進行實驗、(7)與其他道路使用者的安全互動、(8)與乘客的實驗、(9)定期報告及資訊共享。 三、實驗後應注意之事項:在結束其測試活動後應考量的因素,包括報告實驗結果、測試車輛及其部件的出口或處置。如果測試車輛是臨時進口的,則在測試完成後可能需要將其銷毀或捐贈。 該測試指引僅適用於臨時實驗,而非永久的市場部署,加拿大運輸部將繼續更新該測試指引及其他文件和工具,以支持加拿大道路使用者的安全。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。